The crystal structure of premithramycin B in complex with MTMOIV, a baeyer-villiger monooxygenase from the mithramycin biosynthetic pathway in streptomyces argillaceus.

Experimental Data Snapshot

  • Resolution: 1.90 Å
  • R-Value Free: 0.222 
  • R-Value Work: 0.180 
  • R-Value Observed: 0.182 

wwPDB Validation   3D Report Full Report

Ligand Structure Quality Assessment 

This is version 1.3 of the entry. See complete history


Molecular Insight into Substrate Recognition and Catalysis of Baeyer-Villiger Monooxygenase MtmOIV, the Key Frame-Modifying Enzyme in the Biosynthesis of Anticancer Agent Mithramycin.

Bosserman, M.A.Downey, T.Noinaj, N.Buchanan, S.K.Rohr, J.

(2013) ACS Chem Biol 8: 2466-2477

  • DOI: https://doi.org/10.1021/cb400399b
  • Primary Citation of Related Structures:  
    4K5R, 4K5S

  • PubMed Abstract: 

    Baeyer-Villiger monooxygenases (BVMOs) have been shown to play key roles for the biosynthesis of important natural products. MtmOIV, a homodimeric FAD- and NADPH-dependent BVMO, catalyzes the key frame-modifying steps of the mithramycin biosynthetic pathway, including an oxidative C-C bond cleavage, by converting its natural substrate premithramycin B into mithramycin DK, the immediate precursor of mithramycin. The drastically improved protein structure of MtmOIV along with the high-resolution structure of MtmOIV in complex with its natural substrate premithramycin B are reported here, revealing previously undetected key residues that are important for substrate recognition and catalysis. Kinetic analyses of selected mutants allowed us to probe the substrate binding pocket of MtmOIV and also to discover the putative NADPH binding site. This is the first substrate-bound structure of MtmOIV providing new insights into substrate recognition and catalysis, which paves the way for the future design of a tailored enzyme for the chemo-enzymatic preparation of novel mithramycin analogues.

  • Organizational Affiliation

    Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY 40536-0596, USA.

Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 1
MoleculeChains Sequence LengthOrganismDetailsImage
Oxygenase536Streptomyces argillaceusMutation(s): 0 
Gene Names: mtmOIV
Find proteins for Q194P4 (Streptomyces argillaceus)
Explore Q194P4 
Go to UniProtKB:  Q194P4
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
UniProt GroupQ194P4
Sequence Annotations
  • Reference Sequence
Small Molecules
Ligands 2 Unique
IDChains Name / Formula / InChI Key2D Diagram3D Interactions
Query on PM0

Download Ideal Coordinates CCD File 
C [auth A]premithramycin B
C53 H72 O24
Query on FAD

Download Ideal Coordinates CCD File 
C27 H33 N9 O15 P2
Experimental Data & Validation

Experimental Data

  • Resolution: 1.90 Å
  • R-Value Free: 0.222 
  • R-Value Work: 0.180 
  • R-Value Observed: 0.182 
  • Space Group: P 2 2 21
Unit Cell:
Length ( Å )Angle ( ˚ )
a = 55.715α = 90
b = 79.748β = 90
c = 154.264γ = 90
Software Package:
Software NamePurpose
SERGUIdata collection
HKL-2000data reduction
HKL-2000data scaling

Structure Validation

View Full Validation Report

Ligand Structure Quality Assessment 

Entry History 

Deposition Data

Revision History  (Full details and data files)

  • Version 1.0: 2013-10-09
    Type: Initial release
  • Version 1.1: 2013-11-27
    Changes: Database references
  • Version 1.2: 2014-11-12
    Changes: Structure summary
  • Version 1.3: 2024-02-28
    Changes: Data collection, Database references, Derived calculations, Structure summary