4JVH

Structure of the star domain of quaking protein in complex with RNA


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 3.50 Å
  • R-Value Free: 0.316 
  • R-Value Work: 0.243 
  • R-Value Observed: 0.250 

wwPDB Validation 3D Report Full Report



Literature

Structure-function studies of STAR family Quaking proteins bound to their in vivo RNA target sites.

Teplova, M.Hafner, M.Teplov, D.Essig, K.Tuschl, T.Patel, D.J.

(2013) Genes Dev 27: 928-940

  • DOI: 10.1101/gad.216531.113
  • Structures With Same Primary Citation

  • PubMed Abstract: 
  • Mammalian Quaking (QKI) and its Caenorhabditis elegans homolog, GLD-1 (defective in germ line development), are evolutionarily conserved RNA-binding proteins, which post-transcriptionally regulate target genes essential for developmental processes an ...

    Mammalian Quaking (QKI) and its Caenorhabditis elegans homolog, GLD-1 (defective in germ line development), are evolutionarily conserved RNA-binding proteins, which post-transcriptionally regulate target genes essential for developmental processes and myelination. We present X-ray structures of the STAR (signal transduction and activation of RNA) domain, composed of Qua1, K homology (KH), and Qua2 motifs of QKI and GLD-1 bound to high-affinity in vivo RNA targets containing YUAAY RNA recognition elements (RREs). The KH and Qua2 motifs of the STAR domain synergize to specifically interact with bases and sugar-phosphate backbones of the bound RRE. Qua1-mediated homodimerization generates a scaffold that enables concurrent recognition of two RREs, thereby plausibly targeting tandem RREs present in many QKI-targeted transcripts. Structure-guided mutations reduced QKI RNA-binding affinity in vitro and in vivo, and expression of QKI mutants in human embryonic kidney cells (HEK293) significantly decreased the abundance of QKI target mRNAs. Overall, our studies define principles underlying RNA target selection by STAR homodimers and provide insights into the post-transcriptional regulatory function of mammalian QKI proteins.


    Organizational Affiliation

    Structural Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York 10065, USA.



Macromolecules

Find similar proteins by: Sequence  |  Structure

Entity ID: 1
MoleculeChainsSequence LengthOrganismDetails
Protein quaking
A
209Homo sapiensMutation(s): 0 
Gene Names: QKIHKQ
Find proteins for Q96PU8 (Homo sapiens)
Go to UniProtKB:  Q96PU8
NIH Common Fund Data Resources
PHAROS  Q96PU8
Protein Feature View
  • Reference Sequence
  • Find similar nucleic acids by: Sequence   |   Structure
Entity ID: 2
MoleculeChainsLengthOrganism
RNA (5'-R(*UP*UP*CP*AP*CP*UP*AP*AP*CP*AP*A)-3')D11N/A
Small Molecules
Ligands 1 Unique
IDChainsName / Formula / InChI Key2D Diagram3D Interactions
SO4
Query on SO4

Download CCD File 
A
SULFATE ION
O4 S
QAOWNCQODCNURD-UHFFFAOYSA-L
 Ligand Interaction
Modified Residues  1 Unique
IDChainsTypeFormula2D DiagramParent
MSE
Query on MSE
AL-PEPTIDE LINKINGC5 H11 N O2 SeMET
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 3.50 Å
  • R-Value Free: 0.316 
  • R-Value Work: 0.243 
  • R-Value Observed: 0.250 
  • Space Group: P 61 2 2
Unit Cell:
Length ( Å )Angle ( ˚ )
a = 98.634α = 90
b = 98.634β = 90
c = 103.137γ = 120
Software Package:
Software NamePurpose
PHENIXrefinement
PDB_EXTRACTdata extraction
ADSCdata collection
HKL-2000data reduction
HKL-2000data scaling
PHENIXphasing

Structure Validation

View Full Validation Report



Entry History 

Deposition Data

Revision History 

  • Version 1.0: 2013-05-08
    Type: Initial release