Primary Citation of Related Structures:   4FBK, 4FBQ, 4FBW, 4FCX
PubMed Abstract: 
The Mre11-Rad50-Nbs1 (MRN) complex tethers, processes and signals DNA double-strand breaks, promoting genomic stability. To understand the functional architecture of MRN, we determined the crystal structures of the Schizosaccharomyces pombe Mre11 dimeric catalytic domain alone and in complex with a fragment of Nbs1 ...
The Mre11-Rad50-Nbs1 (MRN) complex tethers, processes and signals DNA double-strand breaks, promoting genomic stability. To understand the functional architecture of MRN, we determined the crystal structures of the Schizosaccharomyces pombe Mre11 dimeric catalytic domain alone and in complex with a fragment of Nbs1. Two Nbs1 subunits stretch around the outside of the nuclease domains of Mre11, with one subunit additionally bridging and locking the Mre11 dimer via a highly conserved asymmetrical binding motif. Our results show that Mre11 forms a flexible dimer and suggest that Nbs1 not only is a checkpoint adaptor but also functionally influences Mre11-Rad50. Clinical mutations in Mre11 are located along the Nbs1-interaction sites and weaken the Mre11-Nbs1 interaction. However, they differentially affect DNA repair and telomere maintenance in Saccharomyces cerevisiae, potentially providing insight into their different human disease pathologies.
Organizational Affiliation: 
Gene Center, Ludwig Maximilians University Munich, Munich, Germany.