Borrelia burgdorferi outer surface lipoprotein BBA73

Experimental Data Snapshot

  • Resolution: 2.09 Å
  • R-Value Free: 0.245 
  • R-Value Work: 0.214 
  • R-Value Observed: 0.215 

wwPDB Validation   3D Report Full Report

This is version 1.3 of the entry. See complete history


Structural Characterization of the Borrelia Burgdorferi Outer Surface Protein Bba73 Implicates Dimerization as a Functional Mechanism.

Brangulis, K.Petrovskis, I.Kazaks, A.Baumanis, V.Tars, K.

(2013) Biochem Biophys Res Commun 434: 848

  • DOI: https://doi.org/10.1016/j.bbrc.2013.04.028
  • Primary Citation of Related Structures:  
    4AXZ, 4B2F

  • PubMed Abstract: 

    Borrelia burgdorferi, which is the causative agent of Lyme disease, is transmitted from infected Ixodes ticks to a mammalian host following a tick bite. Upon changing the host organism from an Ixodes tick to a warm-blooded mammal, the spirochete must adapt to very different conditions, which is achieved by altering the expression of several genes in response to a changing environment. Recently, considerable attention has been devoted to several outer surface proteins, including BBA73, that undergo dramatic upregulation during the transmission of B. burgdorferi from infected Ixodes ticks to mammals and that are thought to be important for the establishment and maintenance of the infection. These upregulated proteins could reveal the mechanism of pathogenesis and potentially serve as novel drug targets to prevent the transmission of the pathogenic bacteria. To promote effective treatments for Lyme disease and to gain better insight into B. burgdorferi pathogenesis, we have determined the crystal structure of the upregulated outer surface protein BBA73 at 2.0 Å resolution. We observed that the BBA73 protein exists as a homodimer both in the crystal and in solution. The monomers interact with their N-terminal α-helices and form a cleft that could potentially serve as a ligand or receptor binding site. To confirm that the protein dimerizes through the interaction of the N-terminal regions, we produced an N-terminal deletion mutant of BBA73 to disrupt dimerization, and we determined the crystal structure of the truncated BBA73 protein at 1.9 Å resolution. The truncated protein did not form a homodimer, and the crystal structure confirmed that the overall fold is identical to that of the native BBA73 protein. Notably, a paralogous protein CspA from B. burgdorferi with known crystal structure also forms a homodimer, albeit through an entirely different interaction between the monomers.

  • Organizational Affiliation

    Latvian Biomedical Research and Study Centre, Ratsupites 1, LV-1067 Riga, Latvia. kalvis@biomed.lu.lv

Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 1
MoleculeChains Sequence LengthOrganismDetailsImage
PUTATIVE ANTIGEN P35273Borreliella burgdorferi B31Mutation(s): 0 
Find proteins for O50962 (Borreliella burgdorferi (strain ATCC 35210 / DSM 4680 / CIP 102532 / B31))
Explore O50962 
Go to UniProtKB:  O50962
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
UniProt GroupO50962
Sequence Annotations
  • Reference Sequence
Experimental Data & Validation

Experimental Data

  • Resolution: 2.09 Å
  • R-Value Free: 0.245 
  • R-Value Work: 0.214 
  • R-Value Observed: 0.215 
  • Space Group: P 21 21 2
Unit Cell:
Length ( Å )Angle ( ˚ )
a = 153.63α = 90
b = 47.1β = 90
c = 34.5γ = 90
Software Package:
Software NamePurpose
MOSFLMdata reduction
SCALAdata scaling

Structure Validation

View Full Validation Report

Entry History 

Deposition Data

Revision History  (Full details and data files)

  • Version 1.0: 2013-05-08
    Type: Initial release
  • Version 1.1: 2013-06-12
    Changes: Database references
  • Version 1.2: 2018-01-17
    Changes: Data collection
  • Version 1.3: 2023-12-20
    Changes: Data collection, Database references, Other, Refinement description