4ZLX

N-terminal DNA binding domain of the antitoxin Phd from phage P1


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.31 Å
  • R-Value Free: 0.245 
  • R-Value Work: 0.179 
  • R-Value Observed: 0.182 

wwPDB Validation   3D Report Full Report


This is version 1.3 of the entry. See complete history


Literature

An intrinsically disordered entropic switch determines allostery in Phd-Doc regulation.

Garcia-Pino, A.De Gieter, S.Talavera, A.De Greve, H.Efremov, R.G.Loris, R.

(2016) Nat Chem Biol 12: 490-496

  • DOI: 10.1038/nchembio.2078
  • Primary Citation of Related Structures:  
    4ZLX, 4ZM0, 4ZM2

  • PubMed Abstract: 
  • Conditional cooperativity is a common mechanism involved in transcriptional regulation of prokaryotic type II toxin-antitoxin operons and is intricately related to bacterial persistence. It allows the toxin component of a toxin-antitoxin module to act as a co-repressor at low doses of toxin as compared to antitoxin ...

    Conditional cooperativity is a common mechanism involved in transcriptional regulation of prokaryotic type II toxin-antitoxin operons and is intricately related to bacterial persistence. It allows the toxin component of a toxin-antitoxin module to act as a co-repressor at low doses of toxin as compared to antitoxin. When toxin level exceeds a certain threshold, however, the toxin becomes a de-repressor. Most antitoxins contain an intrinsically disordered region (IDR) that typically is involved in toxin neutralization and repressor complex formation. To address how the antitoxin IDR is involved in transcription regulation, we studied the phd-doc operon from bacteriophage P1. We provide evidence that the IDR of Phd provides an entropic barrier precluding full operon repression in the absence of Doc. Binding of Doc results in a cooperativity switch and consequent strong operon repression, enabling context-specific modulation of the regulatory process. Variations of this theme are likely to be a common mechanism in the autoregulation of bacterial operons that involve intrinsically disordered regions.


    Organizational Affiliation

    Structural Biology Research Center, VIB, Brussels, Belgium.



Macromolecules
Find similar proteins by:  (by identity cutoff)  |  Structure
Entity ID: 1
MoleculeChainsSequence LengthOrganismDetailsImage
Antitoxin phdA, B53Escherichia virus P1Mutation(s): 0 
Gene Names: phd
UniProt
Find proteins for Q06253 (Escherichia phage P1)
Explore Q06253 
Go to UniProtKB:  Q06253
Protein Feature View
Expand
  • Reference Sequence
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.31 Å
  • R-Value Free: 0.245 
  • R-Value Work: 0.179 
  • R-Value Observed: 0.182 
  • Space Group: P 61
Unit Cell:
Length ( Å )Angle ( ˚ )
a = 42.94α = 90
b = 42.94β = 90
c = 100.18γ = 120
Software Package:
Software NamePurpose
BUSTERrefinement
XDSdata reduction
Aimlessdata scaling
PHASERphasing

Structure Validation

View Full Validation Report




Entry History 

Deposition Data

Revision History  (Full details and data files)

  • Version 1.0: 2016-04-20
    Type: Initial release
  • Version 1.1: 2016-05-04
    Changes: Database references
  • Version 1.2: 2016-05-18
    Changes: Database references
  • Version 1.3: 2016-06-29
    Changes: Database references