4Y3C

I304V 3D polymerase mutant of EMCV


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 3.2 Å
  • R-Value Free: 0.250 
  • R-Value Work: 0.220 

wwPDB Validation 3D Report Full Report


This is version 1.1 of the entry. See complete history

Literature

The RNA Template Channel of the RNA-Dependent RNA Polymerase as a Target for Development of Antiviral Therapy of Multiple Genera within a Virus Family.

van der Linden, L.Vives-Adrian, L.Selisko, B.Ferrer-Orta, C.Liu, X.Lanke, K.Ulferts, R.De Palma, A.M.Tanchis, F.Goris, N.Lefebvre, D.De Clercq, K.Leyssen, P.Lacroix, C.Purstinger, G.Coutard, B.Canard, B.Boehr, D.D.Arnold, J.J.Cameron, C.E.Verdaguer, N.Neyts, J.van Kuppeveld, F.J.

(2015) Plos Pathog. 11: e1004733-e1004733

  • DOI: 10.1371/journal.ppat.1004733
  • Primary Citation of Related Structures:  

  • PubMed Abstract: 
  • The genus Enterovirus of the family Picornaviridae contains many important human pathogens (e.g., poliovirus, coxsackievirus, rhinovirus, and enterovirus 71) for which no antiviral drugs are available. The viral RNA-dependent RNA polymerase is an att ...

    The genus Enterovirus of the family Picornaviridae contains many important human pathogens (e.g., poliovirus, coxsackievirus, rhinovirus, and enterovirus 71) for which no antiviral drugs are available. The viral RNA-dependent RNA polymerase is an attractive target for antiviral therapy. Nucleoside-based inhibitors have broad-spectrum activity but often exhibit off-target effects. Most non-nucleoside inhibitors (NNIs) target surface cavities, which are structurally more flexible than the nucleotide-binding pocket, and hence have a more narrow spectrum of activity and are more prone to resistance development. Here, we report a novel NNI, GPC-N114 (2,2'-[(4-chloro-1,2-phenylene)bis(oxy)]bis(5-nitro-benzonitrile)) with broad-spectrum activity against enteroviruses and cardioviruses (another genus in the picornavirus family). Surprisingly, coxsackievirus B3 (CVB3) and poliovirus displayed a high genetic barrier to resistance against GPC-N114. By contrast, EMCV, a cardiovirus, rapidly acquired resistance due to mutations in 3Dpol. In vitro polymerase activity assays showed that GPC-N114 i) inhibited the elongation activity of recombinant CVB3 and EMCV 3Dpol, (ii) had reduced activity against EMCV 3Dpol with the resistance mutations, and (iii) was most efficient in inhibiting 3Dpol when added before the RNA template-primer duplex. Elucidation of a crystal structure of the inhibitor bound to CVB3 3Dpol confirmed the RNA-binding channel as the target for GPC-N114. Docking studies of the compound into the crystal structures of the compound-resistant EMCV 3Dpol mutants suggested that the resistant phenotype is due to subtle changes that interfere with the binding of GPC-N114 but not of the RNA template-primer. In conclusion, this study presents the first NNI that targets the RNA template channel of the picornavirus polymerase and identifies a new pocket that can be used for the design of broad-spectrum inhibitors. Moreover, this study provides important new insight into the plasticity of picornavirus polymerases at the template binding site.


    Organizational Affiliation

    Department of Medical Microbiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, Nijmegen, The Netherlands; Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, University of Leuven, Leuven, Belgium.




Macromolecules

Find similar proteins by: Sequence  |  Structure

Entity ID: 1
MoleculeChainsSequence LengthOrganismDetails
3D polymerase
A, B, C, D, E, F
460Mengo encephalomyocarditis virusMutation(s): 2 
Find proteins for P12296 (Mengo encephalomyocarditis virus)
Go to UniProtKB:  P12296
Small Molecules
Ligands 2 Unique
IDChainsName / Formula / InChI Key2D Diagram3D Interactions
CL
Query on CL

Download SDF File 
Download CCD File 
D
CHLORIDE ION
Cl
VEXZGXHMUGYJMC-UHFFFAOYSA-M
 Ligand Interaction
GOL
Query on GOL

Download SDF File 
Download CCD File 
D, E, F
GLYCEROL
GLYCERIN; PROPANE-1,2,3-TRIOL
C3 H8 O3
PEDCQBHIVMGVHV-UHFFFAOYSA-N
 Ligand Interaction
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 3.2 Å
  • R-Value Free: 0.250 
  • R-Value Work: 0.220 
  • Space Group: C 1 2 1
Unit Cell:
Length (Å)Angle (°)
a = 232.332α = 90.00
b = 140.775β = 126.03
c = 171.838γ = 90.00
Software Package:
Software NamePurpose
REFMACrefinement
MOLREPphasing
SCALAdata scaling

Structure Validation

View Full Validation Report or Ramachandran Plots



Entry History 

Deposition Data

Revision History 

  • Version 1.0: 2015-04-01
    Type: Initial release
  • Version 1.1: 2015-04-08
    Type: Database references