4WKY

Streptomcyes albus JA3453 oxazolomycin ketosynthase domain OzmN KS2


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.00 Å
  • R-Value Free: 0.189 
  • R-Value Work: 0.159 
  • R-Value Observed: 0.161 

wwPDB Validation   3D Report Full Report


This is version 1.3 of the entry. See complete history


Literature

Structural and evolutionary relationships of "AT-less" type I polyketide synthase ketosynthases.

Lohman, J.R.Ma, M.Osipiuk, J.Nocek, B.Kim, Y.Chang, C.Cuff, M.Mack, J.Bigelow, L.Li, H.Endres, M.Babnigg, G.Joachimiak, A.Phillips, G.N.Shen, B.

(2015) Proc Natl Acad Sci U S A 112: 12693-12698

  • DOI: 10.1073/pnas.1515460112
  • Primary Citation of Related Structures:  
    4OPE, 4OPF, 4OQJ, 4QYR, 4TKT, 4ZDN, 4WKY

  • PubMed Abstract: 
  • Acyltransferase (AT)-less type I polyketide synthases (PKSs) break the type I PKS paradigm. They lack the integrated AT domains within their modules and instead use a discrete AT that acts in trans, whereas a type I PKS module minimally contains AT, acyl carrier protein (ACP), and ketosynthase (KS) domains ...

    Acyltransferase (AT)-less type I polyketide synthases (PKSs) break the type I PKS paradigm. They lack the integrated AT domains within their modules and instead use a discrete AT that acts in trans, whereas a type I PKS module minimally contains AT, acyl carrier protein (ACP), and ketosynthase (KS) domains. Structures of canonical type I PKS KS-AT didomains reveal structured linkers that connect the two domains. AT-less type I PKS KSs have remnants of these linkers, which have been hypothesized to be AT docking domains. Natural products produced by AT-less type I PKSs are very complex because of an increased representation of unique modifying domains. AT-less type I PKS KSs possess substrate specificity and fall into phylogenetic clades that correlate with their substrates, whereas canonical type I PKS KSs are monophyletic. We have solved crystal structures of seven AT-less type I PKS KS domains that represent various sequence clusters, revealing insight into the large structural and subtle amino acid residue differences that lead to unique active site topologies and substrate specificities. One set of structures represents a larger group of KS domains from both canonical and AT-less type I PKSs that accept amino acid-containing substrates. One structure has a partial AT-domain, revealing the structural consequences of a type I PKS KS evolving into an AT-less type I PKS KS. These structures highlight the structural diversity within the AT-less type I PKS KS family, and most important, provide a unique opportunity to study the molecular evolution of substrate specificity within the type I PKSs.


    Organizational Affiliation

    Department of Chemistry, The Scripps Research Institute, Jupiter, FL 33458; Department of Molecular Therapeutics, The Scripps Research Institute, Jupiter, FL 33458; Natural Products Library Initiative at The Scripps Research Institute, The Scripps Research Institute, Jupiter, FL 33458 shenb@scripps.edu.



Macromolecules
Find similar proteins by:  (by identity cutoff)  |  Structure
Entity ID: 1
MoleculeChainsSequence LengthOrganismDetailsImage
Beta-ketoacyl synthaseA, B595Streptomyces albusMutation(s): 0 
Gene Names: ozmNPKS
UniProt
Find proteins for B2WW47 (Streptomyces albus)
Explore B2WW47 
Go to UniProtKB:  B2WW47
Protein Feature View
Expand
  • Reference Sequence
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.00 Å
  • R-Value Free: 0.189 
  • R-Value Work: 0.159 
  • R-Value Observed: 0.161 
  • Space Group: P 21 21 21
Unit Cell:
Length ( Å )Angle ( ˚ )
a = 82.271α = 90
b = 100.482β = 90
c = 160.103γ = 90
Software Package:
Software NamePurpose
HKL-3000phasing
HKL-3000data scaling
DMphasing
SHELXphasing
MLPHAREphasing
Cootmodel building
ARPmodel building
WARPmodel building
SOLVEphasing
RESOLVEmodel building
PDB_EXTRACTdata extraction
REFMACrefinement
DENZOdata reduction
SCALEPACKdata scaling

Structure Validation

View Full Validation Report




Entry History 

Revision History  (Full details and data files)

  • Version 1.0: 2014-10-29
    Type: Initial release
  • Version 1.1: 2016-11-02
    Changes: Database references, Other, Structure summary
  • Version 1.2: 2017-02-22
    Changes: Structure summary
  • Version 1.3: 2017-11-22
    Changes: Refinement description