Crystal Structure of CRISPR-Associated protein in complex with 2'-Deoxyadenosine 5'-Triphosphate

Experimental Data Snapshot

  • Resolution: 2.77 Å
  • R-Value Free: 0.247 
  • R-Value Work: 0.207 
  • R-Value Observed: 0.209 

wwPDB Validation   3D Report Full Report

Ligand Structure Quality Assessment 

This is version 1.2 of the entry. See complete history


Molecular insights into DNA interference by CRISPR-associated nuclease-helicase Cas3.

Gong, B.Shin, M.Sun, J.Jung, C.H.Bolt, E.L.van der Oost, J.Kim, J.S.

(2014) Proc Natl Acad Sci U S A 111: 16359-16364

  • DOI: https://doi.org/10.1073/pnas.1410806111
  • Primary Citation of Related Structures:  
    4Q2C, 4Q2D

  • PubMed Abstract: 

    Mobile genetic elements in bacteria are neutralized by a system based on clustered regularly interspaced short palindromic repeats (CRISPRs) and CRISPR-associated (Cas) proteins. Type I CRISPR-Cas systems use a "Cascade" ribonucleoprotein complex to guide RNA specifically to complementary sequence in invader double-stranded DNA (dsDNA), a process called "interference." After target recognition by Cascade, formation of an R-loop triggers recruitment of a Cas3 nuclease-helicase, completing the interference process by destroying the invader dsDNA. To elucidate the molecular mechanism of CRISPR interference, we analyzed crystal structures of Cas3 from the bacterium Thermobaculum terrenum, with and without a bound ATP analog. The structures reveal a histidine-aspartate (HD)-type nuclease domain fused to superfamily-2 (SF2) helicase domains and a distinct C-terminal domain. Binding of ATP analog at the interface of the SF2 helicase RecA-like domains rearranges a motif V with implications for the enzyme mechanism. The HD-nucleolytic site contains two metal ions that are positioned at the end of a proposed nucleic acid-binding tunnel running through the SF2 helicase structure. This structural alignment suggests a mechanism for 3' to 5' nucleolytic processing of the displaced strand of invader DNA that is coordinated with ATP-dependent 3' to 5' translocation of Cas3 along DNA. In agreement with biochemical studies, the presented Cas3 structures reveal important mechanistic details on the neutralization of genetic invaders by type I CRISPR-Cas systems.

  • Organizational Affiliation

    Interdisciplinary Graduate Program in Molecular Medicine, Chonnam National University, Gwangju 501-746, Korea; Department of Chemistry, Chonnam National University, Gwangju 500-757, Korea;

Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 1
MoleculeChains Sequence LengthOrganismDetailsImage
CRISPR-associated helicase Cas3949Thermobaculum terrenum ATCC BAA-798Mutation(s): 0 
Gene Names: Tter_1895
Find proteins for D1CGD0 (Thermobaculum terrenum (strain ATCC BAA-798 / YNP1))
Explore D1CGD0 
Go to UniProtKB:  D1CGD0
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
UniProt GroupD1CGD0
Sequence Annotations
  • Reference Sequence
Experimental Data & Validation

Experimental Data

  • Resolution: 2.77 Å
  • R-Value Free: 0.247 
  • R-Value Work: 0.207 
  • R-Value Observed: 0.209 
  • Space Group: C 2 2 21
Unit Cell:
Length ( Å )Angle ( ˚ )
a = 105.684α = 90
b = 211.63β = 90
c = 104.272γ = 90
Software Package:
Software NamePurpose
HKL-2000data collection
HKL-2000data reduction
HKL-2000data scaling

Structure Validation

View Full Validation Report

Ligand Structure Quality Assessment 

Entry History 

Deposition Data

Revision History  (Full details and data files)

  • Version 1.0: 2014-11-19
    Type: Initial release
  • Version 1.1: 2022-08-24
    Changes: Database references, Derived calculations
  • Version 1.2: 2023-11-08
    Changes: Data collection, Refinement description