4NK4

Crystal structure of FabI from Candidatus Liberibacter asiaticus


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.70 Å
  • R-Value Free: 0.201 
  • R-Value Work: 0.174 
  • R-Value Observed: 0.174 

wwPDB Validation 3D Report Full Report


This is version 1.2 of the entry. See complete history


Literature

Crystal structures and kinetic properties of enoyl-acyl carrier protein reductase I from Candidatus Liberibacter asiaticus.

Jiang, L.Gao, Z.Li, Y.Wang, S.Dong, Y.

(2014) Protein Sci 23: 366-377

  • DOI: 10.1002/pro.2418
  • Primary Citation of Related Structures:  
    4NK4, 4NK5

  • PubMed Abstract: 
  • Huanglongbing (HLB) is a destructive citrus disease. The leading cause of HLB is Candidatus Liberibacter asiaticus. Fatty acid biosynthesis is essential for bacterial viability and has been validated as a target for the discovery of novel antibacterial agents ...

    Huanglongbing (HLB) is a destructive citrus disease. The leading cause of HLB is Candidatus Liberibacter asiaticus. Fatty acid biosynthesis is essential for bacterial viability and has been validated as a target for the discovery of novel antibacterial agents. Enoyl-acyl carrier protein reductase (also called ENR or FabI and a product of the fabI gene) is an enzyme required in a critical step of bacterial fatty acid biosynthesis and has attracted attention as a target of novel antimicrobial agents. We determined the crystal structures of FabI from Ca. L. asiaticus in its apoform as well as in complex with b-nicotinamide adenine dinucleotide (NAD) at 1.7 and 2.7 Å resolution, respectively, to facilitate the design and screening of small molecule inhibitors of FabI. The monomeric ClFabI is highly similar to other known FabI structures as expected; however, unlike the typical tetramer, ClFabI exists as a hexamer in crystal, whereas as dimer in solution, on the other hand, the substrate binding loop which always disordered in apoform FabI structures is ordered in apo-ClFabI. Interestingly, the structure of ClFabI undergoes remarkable conformational change in the substrate-binding loop in the presence of NAD. We conclude that the signature sequence motif of FabI can be considered as Gly-(Xaa)5-Ser-(Xaa)n-Val-Tyr-(Xaa)6-Lys-(Xaa)n-Thr instead of Tyr-(Xaa)6-Lys. We have further identified isoniazid as a competitive inhibitor with NADH.


    Organizational Affiliation

    Ministry of Education Key Laboratory of Plant Biology, Department of Horticulture and Forestry, Huazhong Agricultural University, Wuhan 430070, China.



Macromolecules
Find similar proteins by:  (by identity cutoff)  |  Structure
Entity ID: 1
MoleculeChainsSequence LengthOrganismDetailsImage
Enoyl-[acyl-carrier-protein] reductase [NADH]A, B, C, D, E, F301Candidatus Liberibacter asiaticusMutation(s): 0 
Gene Names: WSI_01645
EC: 1.3.1.9
Protein Feature View
 ( Mouse scroll to zoom / Hold left click to move )
  • Reference Sequence
Small Molecules
Ligands 1 Unique
IDChainsName / Formula / InChI Key2D Diagram3D Interactions
PEG
Query on PEG

Download CCD File 
A, B, C, D, E, F
DI(HYDROXYETHYL)ETHER
C4 H10 O3
MTHSVFCYNBDYFN-UHFFFAOYSA-N
 Ligand Interaction
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.70 Å
  • R-Value Free: 0.201 
  • R-Value Work: 0.174 
  • R-Value Observed: 0.174 
  • Space Group: P 32 2 1
Unit Cell:
Length ( Å )Angle ( ˚ )
a = 203.488α = 90
b = 203.488β = 90
c = 81.764γ = 120
Software Package:
Software NamePurpose
MAR345data collection
PHASERphasing
PHENIXrefinement
HKL-2000data reduction
HKL-2000data scaling

Structure Validation

View Full Validation Report



Entry History 

Deposition Data

Revision History 

  • Version 1.0: 2014-02-12
    Type: Initial release
  • Version 1.1: 2014-04-09
    Changes: Database references
  • Version 1.2: 2017-11-22
    Changes: Refinement description