4LQS

Crystal structure of the Cbk1-Mob2 kinase-coactivator complex


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 3.3 Å
  • R-Value Free: 0.307 
  • R-Value Work: 0.270 

wwPDB Validation 3D Report Full Report


This is version 1.1 of the entry. See complete history

Literature

The Structure of an NDR/LATS Kinase-Mob Complex Reveals a Novel Kinase-Coactivator System and Substrate Docking Mechanism.

Gogl, G.Schneider, K.D.Yeh, B.J.Alam, N.Nguyen Ba, A.N.Moses, A.M.Hetenyi, C.Remenyi, A.Weiss, E.L.

(2015) Plos Biol. 13: e1002146-e1002146

  • DOI: 10.1371/journal.pbio.1002146
  • Primary Citation of Related Structures:  

  • PubMed Abstract: 
  • Eukaryotic cells commonly use protein kinases in signaling systems that relay information and control a wide range of processes. These enzymes have a fundamentally similar structure, but achieve functional diversity through variable regions that dete ...

    Eukaryotic cells commonly use protein kinases in signaling systems that relay information and control a wide range of processes. These enzymes have a fundamentally similar structure, but achieve functional diversity through variable regions that determine how the catalytic core is activated and recruited to phosphorylation targets. "Hippo" pathways are ancient protein kinase signaling systems that control cell proliferation and morphogenesis; the NDR/LATS family protein kinases, which associate with "Mob" coactivator proteins, are central but incompletely understood components of these pathways. Here we describe the crystal structure of budding yeast Cbk1-Mob2, to our knowledge the first of an NDR/LATS kinase-Mob complex. It shows a novel coactivator-organized activation region that may be unique to NDR/LATS kinases, in which a key regulatory motif apparently shifts from an inactive binding mode to an active one upon phosphorylation. We also provide a structural basis for a substrate docking mechanism previously unknown in AGC family kinases, and show that docking interaction provides robustness to Cbk1's regulation of its two known in vivo substrates. Co-evolution of docking motifs and phosphorylation consensus sites strongly indicates that a protein is an in vivo regulatory target of this hippo pathway, and predicts a new group of high-confidence Cbk1 substrates that function at sites of cytokinesis and cell growth. Moreover, docking peptides arise in unstructured regions of proteins that are probably already kinase substrates, suggesting a broad sequential model for adaptive acquisition of kinase docking in rapidly evolving intrinsically disordered polypeptides.


    Organizational Affiliation

    Lendület Protein Interaction Group, Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary; Department of Biochemistry, Eötvös Loránd University, Budapest, Hungary.




Macromolecules

Find similar proteins by: Sequence  |  Structure

Entity ID: 1
MoleculeChainsSequence LengthOrganismDetails
Serine/threonine-protein kinase CBK1
A
508Saccharomyces cerevisiae (strain ATCC 204508 / S288c)Mutation(s): 1 
Gene Names: CBK1
EC: 2.7.11.1
Find proteins for P53894 (Saccharomyces cerevisiae (strain ATCC 204508 / S288c))
Go to UniProtKB:  P53894
Entity ID: 2
MoleculeChainsSequence LengthOrganismDetails
CBK1 kinase activator protein MOB2
B
244Saccharomyces cerevisiae (strain ATCC 204508 / S288c)Mutation(s): 0 
Gene Names: MOB2
Find proteins for P43563 (Saccharomyces cerevisiae (strain ATCC 204508 / S288c))
Go to Gene View: MOB2
Go to UniProtKB:  P43563
Small Molecules
Ligands 1 Unique
IDChainsName / Formula / InChI Key2D Diagram3D Interactions
ANP
Query on ANP

Download SDF File 
Download CCD File 
A
PHOSPHOAMINOPHOSPHONIC ACID-ADENYLATE ESTER
C10 H17 N6 O12 P3
PVKSNHVPLWYQGJ-KQYNXXCUSA-N
 Ligand Interaction
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 3.3 Å
  • R-Value Free: 0.307 
  • R-Value Work: 0.270 
  • Space Group: C 1 2 1
Unit Cell:
Length (Å)Angle (°)
a = 138.430α = 90.00
b = 79.980β = 117.60
c = 117.580γ = 90.00
Software Package:
Software NamePurpose
PHENIXrefinement
PHASERphasing
XDSdata reduction
XDSdata scaling

Structure Validation

View Full Validation Report or Ramachandran Plots



Entry History 

Deposition Data

  • Deposited Date: 2013-07-19 
  • Released Date: 2014-07-30 
  • Deposition Author(s): Gogl, G., Remenyi, A.

Revision History 

  • Version 1.0: 2014-07-30
    Type: Initial release
  • Version 1.1: 2015-05-20
    Type: Database references