4L9X

Triazine hydrolase from Arthobacter aurescens modified for maximum expression in E.coli


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.85 Å
  • R-Value Free: 0.191 
  • R-Value Work: 0.188 

wwPDB Validation 3D Report Full Report


This is version 1.0 of the entry. See complete history

Literature

Apoenzyme stabilization results in 300-fold increased soluble production of the Zn2+-dependent dechlorinase TrzN.

Jackson, C.J.Coppin, C.W.Carr, P.D.Aleksandrov, A.Wilding, M.Sugrue, E.Ubels, J.Paks, M.Newman, J.Peat, T.S.Russell, R.J.Field, M.Weik, M.Oakeshott, J.G.Scott, C.

(2014) Appl.Environ.Microbiol. --: --

  • DOI: 10.1128/AEM.00916-14
  • Primary Citation of Related Structures:  

  • PubMed Abstract: 
  • Microbial metalloenzymes constitute a large library of biocatalysts, a number of which have already been shown to catalyze the breakdown of toxic chemicals or industrially relevant chemical transformations. However, while there is considerable intere ...

    Microbial metalloenzymes constitute a large library of biocatalysts, a number of which have already been shown to catalyze the breakdown of toxic chemicals or industrially relevant chemical transformations. However, while there is considerable interest in harnessing these catalysts for biotechnology, for many of the enzymes, their large-scale production in active, soluble form in recombinant systems is a significant barrier to their use. In this work, we demonstrate that as few as three mutations can result in a 300-fold increase in the expression of soluble TrzN, an enzyme from Arthrobacter aurescens with environmental applications that catalyzes the hydrolysis of triazine herbicides, in Escherichia coli. Using a combination of X-ray crystallography, kinetic analysis, and computational simulation, we show that the majority of the improvement in expression is due to stabilization of the apoenzyme rather than the metal ion-bound holoenzyme. This provides a structural and mechanistic explanation for the observation that many compensatory mutations can increase levels of soluble-protein production without increasing the stability of the final, active form of the enzyme. This study provides a molecular understanding of the importance of the stability of metal ion free states to the accumulation of soluble protein and shows that differences between apoenzyme and holoenzyme structures can result in mutations affecting the stability of either state differently.


    Organizational Affiliation

    Research School of Chemistry, Australian National University, Canberra, Australian Capital Territory, Australia Institut de Biologie Structurale, Grenoble, France colin.jackson@anu.edu.au colin.scott@csiro.au.




Macromolecules

Find similar proteins by: Sequence  |  Structure

Entity ID: 1
MoleculeChainsSequence LengthOrganismDetails
Triazine hydrolase
A, B
469Paenarthrobacter aurescensMutation(s): 3 
Find proteins for Q6SJY7 (Paenarthrobacter aurescens)
Go to UniProtKB:  Q6SJY7
Small Molecules
Ligands 1 Unique
IDChainsName / Formula / InChI Key2D Diagram3D Interactions
ACT
Query on ACT

Download SDF File 
Download CCD File 
A
ACETATE ION
C2 H3 O2
QTBSBXVTEAMEQO-UHFFFAOYSA-M
 Ligand Interaction
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.85 Å
  • R-Value Free: 0.191 
  • R-Value Work: 0.188 
  • Space Group: P 1 21 1
Unit Cell:
Length (Å)Angle (°)
a = 56.110α = 90.00
b = 101.270β = 100.98
c = 77.230γ = 90.00
Software Package:
Software NamePurpose
REFMACrefinement
Aimlessdata scaling
MOLREPphasing
XDSdata reduction
ADSCdata collection

Structure Validation

View Full Validation Report or Ramachandran Plots



Entry History 

Deposition Data

Revision History 

  • Version 1.0: 2014-05-21
    Type: Initial release