4L2W

Crystal structure of the Shroom-Binding domain of human Rock1


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.49 Å
  • R-Value Free: 0.276 
  • R-Value Work: 0.236 

wwPDB Validation 3D Report Full Report


This is version 1.0 of the entry. See complete history

Literature

Structure of a highly conserved domain of Rock1 required for Shroom-mediated regulation of cell morphology.

Mohan, S.Das, D.Bauer, R.J.Heroux, A.Zalewski, J.K.Heber, S.Dosunmu-Ogunbi, A.M.Trakselis, M.A.Hildebrand, J.D.Vandemark, A.P.

(2013) Plos One 8: e81075-e81075

  • DOI: 10.1371/journal.pone.0081075

  • PubMed Abstract: 
  • Rho-associated coiled coil containing protein kinase (Rho-kinase or Rock) is a well-defined determinant of actin organization and dynamics in most animal cells characterized to date. One of the primary effectors of Rock is non-muscle myosin II. Activ ...

    Rho-associated coiled coil containing protein kinase (Rho-kinase or Rock) is a well-defined determinant of actin organization and dynamics in most animal cells characterized to date. One of the primary effectors of Rock is non-muscle myosin II. Activation of Rock results in increased contractility of myosin II and subsequent changes in actin architecture and cell morphology. The regulation of Rock is thought to occur via autoinhibition of the kinase domain via intramolecular interactions between the N-terminus and the C-terminus of the kinase. This autoinhibited state can be relieved via proteolytic cleavage, binding of lipids to a Pleckstrin Homology domain near the C-terminus, or binding of GTP-bound RhoA to the central coiled-coil region of Rock. Recent work has identified the Shroom family of proteins as an additional regulator of Rock either at the level of cellular distribution or catalytic activity or both. The Shroom-Rock complex is conserved in most animals and is essential for the formation of the neural tube, eye, and gut in vertebrates. To address the mechanism by which Shroom and Rock interact, we have solved the structure of the coiled-coil region of Rock that binds to Shroom proteins. Consistent with other observations, the Shroom binding domain is a parallel coiled-coil dimer. Using biochemical approaches, we have identified a large patch of residues that contribute to Shrm binding. Their orientation suggests that there may be two independent Shrm binding sites on opposing faces of the coiled-coil region of Rock. Finally, we show that the binding surface is essential for Rock colocalization with Shroom and for Shroom-mediated changes in cell morphology.


    Organizational Affiliation

    Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America.




Macromolecules

Find similar proteins by: Sequence  |  Structure

Entity ID: 1
MoleculeChainsSequence LengthOrganismDetails
Rho-associated protein kinase 1
C, D, A, B
87Homo sapiensMutation(s): 3 
Gene Names: ROCK1
EC: 2.7.11.1
Find proteins for Q13464 (Homo sapiens)
Go to Gene View: ROCK1
Go to UniProtKB:  Q13464
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.49 Å
  • R-Value Free: 0.276 
  • R-Value Work: 0.236 
  • Space Group: C 1 2 1
Unit Cell:
Length (Å)Angle (°)
a = 142.500α = 90.00
b = 56.230β = 119.14
c = 80.740γ = 90.00
Software Package:
Software NamePurpose
SHELXphasing
PDB_EXTRACTdata extraction
SHELXDphasing
DENZOdata reduction
PHENIXrefinement
SCALEPACKdata scaling
CBASSdata collection

Structure Validation

View Full Validation Report or Ramachandran Plots



Entry History 

Deposition Data

Revision History 

  • Version 1.0: 2014-04-16
    Type: Initial release