4J26

Estrogen Receptor in complex with proline-flanked LXXLL peptides


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.30 Å
  • R-Value Free: 0.242 
  • R-Value Work: 0.203 
  • R-Value Observed: 0.205 

wwPDB Validation   3D Report Full Report


This is version 1.1 of the entry. See complete history


Literature

Proline primed helix length as a modulator of the nuclear receptor-coactivator interaction

Fuchs, S.Nguyen, H.D.Phan, T.T.Burton, M.F.Nieto, L.de Vries-van Leeuwen, I.J.Schmidt, A.Goodarzifard, M.Agten, S.M.Rose, R.Ottmann, C.Milroy, L.G.Brunsveld, L.

(2013) J Am Chem Soc 135: 4364-4371

  • DOI: 10.1021/ja311748r
  • Primary Citation of Related Structures:  
    4J24, 4J26

  • PubMed Abstract: 
  • Nuclear receptor binding to coactivator proteins is an obligate first step in the regulation of gene transcription. Nuclear receptors preferentially bind to an LXXLL peptide motif which is highly conserved throughout the 300 or so natural coactivator proteins ...

    Nuclear receptor binding to coactivator proteins is an obligate first step in the regulation of gene transcription. Nuclear receptors preferentially bind to an LXXLL peptide motif which is highly conserved throughout the 300 or so natural coactivator proteins. This knowledge has shaped current understanding of this fundamental protein-protein interaction, and continues to inspire the search for new drug therapies. However, sequence specificity beyond the LXXLL motif and the molecular functioning of flanking residues still requires urgent addressing. Here, ribosome display has been used to reassess the estrogen receptor for new and enlarged peptide recognition motifs, leading to the discovery of a potent and highly evolved PXLXXLLXXP binding consensus. Molecular modeling and X-ray crystallography studies have provided the molecular insights on the role of the flanking prolines in priming the length of the α-helix and enabling optimal interactions of the α-helix dipole and its surrounding amino acids with the surface charge clamp and the receptor activation function 2. These findings represent new structural parameters for modulating the nuclear receptor-coactivator interaction based on linear sequences of proteinogenic amino acids and for the design of chemically modified inhibitors.


    Organizational Affiliation

    Laboratory of Chemical Biology, Department of Biomedical Engineering, Technische Universiteit Eindhoven, Den Dolech 2, 5612 AZ Eindhoven, The Netherlands.



Macromolecules
Find similar proteins by:  (by identity cutoff)  |  Structure
Entity ID: 1
MoleculeChainsSequence LengthOrganismDetailsImage
Estrogen receptor betaA, C [auth B]240Homo sapiensMutation(s): 0 
Gene Names: ESR2ESTRBNR3A2
Find proteins for Q92731 (Homo sapiens)
Explore Q92731 
Go to UniProtKB:  Q92731
NIH Common Fund Data Resources
PHAROS:  Q92731
Protein Feature View
Expand
  • Reference Sequence
  • Find similar proteins by:  Sequence   |   Structure
Entity ID: 2
MoleculeChainsSequence LengthOrganismDetailsImage
12-mer PeptideB [auth I], D [auth J]12N/AMutation(s): 0 
Protein Feature View
Expand
  • Reference Sequence
Small Molecules
Ligands 1 Unique
IDChainsName / Formula / InChI Key2D Diagram3D Interactions
EST
Query on EST

Download Ideal Coordinates CCD File 
E [auth A], F [auth B]ESTRADIOL
C18 H24 O2
VOXZDWNPVJITMN-ZBRFXRBCSA-N
 Ligand Interaction
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.30 Å
  • R-Value Free: 0.242 
  • R-Value Work: 0.203 
  • R-Value Observed: 0.205 
  • Space Group: P 32
Unit Cell:
Length ( Å )Angle ( ˚ )
a = 62.63α = 90
b = 62.63β = 90
c = 125.67γ = 120
Software Package:
Software NamePurpose
MAR345dtbdata collection
PHASERphasing
REFMACrefinement
XDSdata reduction
XSCALEdata scaling

Structure Validation

View Full Validation Report



Entry History 

Deposition Data

Revision History  (Full details and data files)

  • Version 1.0: 2013-03-13
    Type: Initial release
  • Version 1.1: 2013-07-10
    Changes: Database references