4IPX

Analyzing the visible conformational substates of the FK506 binding protein FKBP12


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.7 Å
  • R-Value Free: 0.217 
  • R-Value Work: 0.207 

wwPDB Validation 3D Report Full Report


This is version 1.1 of the entry. See complete history

Literature

Analysing the visible conformational substates of the FK506-binding protein FKBP12.

Mustafi, S.M.Chen, H.Li, H.Lemaster, D.M.Hernandez, G.

(2013) Biochem.J. 453: 371-380

  • DOI: 10.1042/BJ20130276

  • PubMed Abstract: 
  • The 1H-15N 2D NMR correlation spectrum of the widely studied FK506-binding protein FKBP12 (FK506-binding protein of 12 kDa) contains previously unreported peak doublings for at least 31 residues that arise from a minor conformational state (12% of to ...

    The 1H-15N 2D NMR correlation spectrum of the widely studied FK506-binding protein FKBP12 (FK506-binding protein of 12 kDa) contains previously unreported peak doublings for at least 31 residues that arise from a minor conformational state (12% of total) which exchanges with the major conformation with a time constant of 3.0 s at 43°C. The largest differences in chemical shift occur for the 80's loop that forms critical recognition interactions with many of the protein partners for the FKBP family. The residues exhibiting doubling extend into the adjacent strands of the β-sheet, across the active site to the α-helix and into the 50's loop. Each of the seven proline residues adopts a trans-peptide linkage in both the major and minor conformations, indicating that this slow transition is not the result of prolyl isomerization. Many of the residues exhibiting resonance doubling also participate in conformational line-broadening transition(s) that occur ~105-fold more rapidly, proposed previously to arise from a single global process. The 1.70 Å (1 Å=0.1 nm) resolution X-ray structure of the H87V variant is strikingly similar to that of FKBP12, yet this substitution quenches the slow conformational transition throughout the protein while quenching the line-broadening transition for residues near the 80's loop. Line-broadening was also decreased for the residues in the α-helix and 50's loop, whereas line-broadening in the 40's loop was unaffected. The K44V mutation selectively reduces the line-broadening in the 40's loop, verifying that at least three distinct conformational transitions underlie the line-broadening processes of FKBP12.


    Organizational Affiliation

    Wadsworth Center, New York State Department of Health, Empire State Plaza, Albany, NY 12201, USA.




Macromolecules

Find similar proteins by: Sequence  |  Structure

Entity ID: 1
MoleculeChainsSequence LengthOrganismDetails
Peptidyl-prolyl cis-trans isomerase FKBP1A
A
107Homo sapiensGene Names: FKBP1A (FKBP1, FKBP12)
EC: 5.2.1.8
Find proteins for P62942 (Homo sapiens)
Go to Gene View: FKBP1A
Go to UniProtKB:  P62942
Small Molecules
Ligands 1 Unique
IDChainsName / Formula / InChI Key2D Diagram3D Interactions
MPD
Query on MPD

Download SDF File 
Download CCD File 
A
(4S)-2-METHYL-2,4-PENTANEDIOL
C6 H14 O2
SVTBMSDMJJWYQN-YFKPBYRVSA-N
 Ligand Interaction
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.7 Å
  • R-Value Free: 0.217 
  • R-Value Work: 0.207 
  • Space Group: C 1 2 1
Unit Cell:
Length (Å)Angle (°)
a = 70.550α = 90.00
b = 35.948β = 95.89
c = 40.923γ = 90.00
Software Package:
Software NamePurpose
PHENIXrefinement
PHENIXmodel building
CrystalCleardata reduction
CrystalCleardata collection
CrystalCleardata scaling
PHENIXphasing

Structure Validation

View Full Validation Report or Ramachandran Plots



Entry History 

Deposition Data

Revision History 

  • Version 1.0: 2013-06-05
    Type: Initial release
  • Version 1.1: 2013-07-31
    Type: Database references