4G1E

Crystal structure of integrin alpha V beta 3 with coil-coiled tag.


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 3.00 Å
  • R-Value Free: 0.261 
  • R-Value Work: 0.241 
  • R-Value Observed: 0.242 

wwPDB Validation 3D Report Full Report



Literature

AlphaV Beta3 Integrin Crystal Structures and their Functional Implications

Dong, X.Mi, L.Z.Zhu, J.Wang, W.Hu, P.Luo, B.H.Springer, T.A.

(2012) Biochemistry 51: 8814-8828

  • DOI: 10.1021/bi300734n
  • Structures With Same Primary Citation

  • PubMed Abstract: 
  • Many questions about the significance of structural features of integrin α(V)β(3) with respect to its mechanism of activation remain. We have determined and re-refined crystal structures of the α(V)β(3) ectodomain linked to C-terminal coiled coils (α ...

    Many questions about the significance of structural features of integrin α(V)β(3) with respect to its mechanism of activation remain. We have determined and re-refined crystal structures of the α(V)β(3) ectodomain linked to C-terminal coiled coils (α(V)β(3)-AB) and four transmembrane (TM) residues in each subunit (α(V)β(3)-1TM), respectively. The α(V) and β(3) subunits with four and eight extracellular domains, respectively, are bent at knees between the integrin headpiece and lower legs, and the headpiece has the closed, low-affinity conformation. The structures differ in the occupancy of three metal-binding sites in the βI domain. Occupancy appears to be related to the pH of crystallization, rather than to the physiologic regulation of ligand binding at the central, metal ion-dependent adhesion site. No electron density was observed for TM residues and much of the α(V) linker. α(V)β(3)-AB and α(V)β(3)-1TM demonstrate flexibility in the linker between their extracellular and TM domains, rather than the previously proposed rigid linkage. A previously postulated interface between the α(V) and β(3) subunits at their knees was also not supported, because it lacks high-quality density, required rebuilding in α(V)β(3)-1TM, and differed markedly between α(V)β(3)-1TM and α(V)β(3)-AB. Together with the variation in domain-domain orientation within their bent ectodomains between α(V)β(3)-AB and α(V)β(3)-1TM, these findings are compatible with the requirement for large structural changes, such as extension at the knees and headpiece opening, in conveying activation signals between the extracellular ligand-binding site and the cytoplasm.


    Organizational Affiliation

    Immune Disease Institute, Children's Hospital Boston, and Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 3 Blackfan Circle, Boston, Massachusetts 02115, United States.



Macromolecules

Find similar proteins by: Sequence  |  Structure

Entity ID: 2
MoleculeChainsSequence LengthOrganismDetails
Integrin beta-3B738Homo sapiensMutation(s): 0 
Gene Names: ITGB3GP3A
Find proteins for P05106 (Homo sapiens)
Explore P05106 
Go to UniProtKB:  P05106
NIH Common Fund Data Resources
PHAROS  P05106
Protein Feature View
 ( Mouse scroll to zoom / Hold left click to move )
  • Reference Sequence

Find similar proteins by: Sequence  |  Structure

Entity ID: 1
MoleculeChainsSequence LengthOrganismDetails
Integrin alpha-VA998Homo sapiensMutation(s): 0 
Gene Names: ITGAVMSK8VNRAVTNR
Find proteins for P06756 (Homo sapiens)
Explore P06756 
Go to UniProtKB:  P06756
NIH Common Fund Data Resources
PHAROS  P06756
Protein Feature View
 ( Mouse scroll to zoom / Hold left click to move )
  • Reference Sequence
Oligosaccharides
Entity ID: 3
MoleculeChainsChain Length2D Diagram Glycosylation
alpha-D-mannopyranose-(1-6)-beta-D-mannopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose
C, M, O
4 N-Glycosylation
Entity ID: 4
MoleculeChainsChain Length2D Diagram Glycosylation
beta-D-mannopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose
D, H, N
3 N-Glycosylation
Entity ID: 5
MoleculeChainsChain Length2D Diagram Glycosylation
alpha-D-mannopyranose-(1-2)-alpha-D-mannopyranose-(1-3)-alpha-D-mannopyranose-(1-6)-[alpha-D-mannopyranose-(1-3)-alpha-D-mannopyranose-(1-3)]beta-D-mannopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose
E
8 N-Glycosylation
Entity ID: 6
MoleculeChainsChain Length2D Diagram Glycosylation
alpha-D-mannopyranose-(1-3)-beta-D-mannopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose
F
4 N-Glycosylation
Entity ID: 7
MoleculeChainsChain Length2D Diagram Glycosylation
2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose
G, J, K, L
2 N-Glycosylation
Entity ID: 8
MoleculeChainsChain Length2D Diagram Glycosylation
alpha-D-mannopyranose-(1-3)-alpha-D-mannopyranose-(1-6)-[alpha-D-mannopyranose-(1-3)]beta-D-mannopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose
I
6 N-Glycosylation
Small Molecules
Ligands 5 Unique
IDChainsName / Formula / InChI Key2D Diagram3D Interactions
NAG
Query on NAG

Download CCD File 
A
2-acetamido-2-deoxy-beta-D-glucopyranose
C8 H15 N O6
OVRNDRQMDRJTHS-FMDGEEDCSA-N
 Ligand Interaction
SO4
Query on SO4

Download CCD File 
A, B
SULFATE ION
O4 S
QAOWNCQODCNURD-UHFFFAOYSA-L
 Ligand Interaction
NI
Query on NI

Download CCD File 
A
NICKEL (II) ION
Ni
VEQPNABPJHWNSG-UHFFFAOYSA-N
 Ligand Interaction
CA
Query on CA

Download CCD File 
A, B
CALCIUM ION
Ca
BHPQYMZQTOCNFJ-UHFFFAOYSA-N
 Ligand Interaction
CL
Query on CL

Download CCD File 
A, B
CHLORIDE ION
Cl
VEXZGXHMUGYJMC-UHFFFAOYSA-M
 Ligand Interaction
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 3.00 Å
  • R-Value Free: 0.261 
  • R-Value Work: 0.241 
  • R-Value Observed: 0.242 
  • Space Group: P 32 2 1
Unit Cell:
Length ( Å )Angle ( ˚ )
a = 128.558α = 90
b = 128.558β = 90
c = 352.859γ = 120
Software Package:
Software NamePurpose
HKL-2000data collection
PHASERphasing
PHENIXrefinement
DENZOdata reduction
SCALAdata scaling

Structure Validation

View Full Validation Report



Entry History 

Deposition Data

Revision History 

  • Version 1.0: 2012-12-12
    Type: Initial release
  • Version 2.0: 2020-07-29
    Type: Remediation
    Reason: Carbohydrate remediation
    Changes: Advisory, Atomic model, Data collection, Database references, Derived calculations, Structure summary