4FJQ

Crystal Structure of an alpha-Bisabolol synthase


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.0001 Å
  • R-Value Free: 0.223 
  • R-Value Work: 0.181 

wwPDB Validation 3D Report Full Report


This is version 1.2 of the entry. See complete history

Literature

Rational engineering of plasticity residues of sesquiterpene synthases from Artemisia annua: product specificity and catalytic efficiency.

Li, J.X.Fang, X.Zhao, Q.Ruan, J.X.Yang, C.Q.Wang, L.J.Miller, D.J.Faraldos, J.A.Allemann, R.K.Chen, X.Y.Zhang, P.

(2013) Biochem.J. 451: 417-426

  • DOI: 10.1042/BJ20130041
  • Primary Citation of Related Structures:  

  • PubMed Abstract: 
  • Most TPSs (terpene synthases) contain plasticity residues that are responsible for diversified terpene products and functional evolution, which provide a potential for improving catalytic efficiency. Artemisinin, a sesquiterpene lactone from Artemisi ...

    Most TPSs (terpene synthases) contain plasticity residues that are responsible for diversified terpene products and functional evolution, which provide a potential for improving catalytic efficiency. Artemisinin, a sesquiterpene lactone from Artemisia annua L., is widely used for malaria treatment and progress has been made in engineering the production of artemisinin or its precursors. In the present paper, we report a new sesquiterpene synthase from A. annua, AaBOS (A. annua α-bisabolol synthase), which has high sequence identity with AaADS (A. annua amorpha-4,11-diene synthase), a key enzyme in artemisinin biosynthesis. Comparative analysis of the two enzymes by domain-swapping and structure-based mutagenesis led to the identification of several plasticity residues, whose alteration changed the product profile of AaBOS to include γ-humulene as the major product. To elucidate the underlying mechanisms, we solved the crystal structures of AaBOS and a γ-humulene-producing AaBOS mutant (termed AaBOS-M2). Among the plasticity residues, position 399, located in the substrate-binding pocket, is crucial for both enzymes. In AaBOS, substitution of threonine for leucine (AaBOSL339T) is required for γ-humulene production; whereas in AaADS, replacing the threonine residue with serine (AaADST399S) resulted in a substantial increase in the activity of amorpha-4,11-diene production, probably as a result of accelerated product release. The present study demonstrates that substitution of plasticity residues has potential for improving catalytic efficiency of the enzyme.


    Organizational Affiliation

    National Key Laboratory of Plant Molecular Genetics and National Plant Gene Research Center, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai 200032, China.




Macromolecules

Find similar proteins by: Sequence  |  Structure

Entity ID: 1
MoleculeChainsSequence LengthOrganismDetails
Amorpha-4,11-diene synthase
A
563Artemisia annuaMutation(s): 0 
Gene Names: AaBOS
EC: 4.2.3.24
Find proteins for M4GGS0 (Artemisia annua)
Go to UniProtKB:  M4GGS0
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.0001 Å
  • R-Value Free: 0.223 
  • R-Value Work: 0.181 
  • Space Group: P 1 21 1
Unit Cell:
Length (Å)Angle (°)
a = 51.997α = 90.00
b = 77.326β = 102.50
c = 68.782γ = 90.00
Software Package:
Software NamePurpose
DENZOdata reduction
PDB_EXTRACTdata extraction
HKL-2000data collection
SCALEPACKdata scaling
PHASERphasing
PHENIXrefinement

Structure Validation

View Full Validation Report or Ramachandran Plots



Entry History 

Deposition Data

  • Deposited Date: 2012-06-12 
  • Released Date: 2013-03-13 
  • Deposition Author(s): Jianxu, L., Peng, Z.

Revision History 

  • Version 1.0: 2013-03-13
    Type: Initial release
  • Version 1.1: 2013-05-01
    Type: Database references
  • Version 1.2: 2017-11-15
    Type: Refinement description