4DJQ

Crystal Structure of wild-type HIV-1 Protease in Complex with MKP86


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.40 Å
  • R-Value Free: 0.204 
  • R-Value Work: 0.179 
  • R-Value Observed: 0.180 

wwPDB Validation   3D Report Full Report


This is version 1.2 of the entry. See complete history


Literature

Design, synthesis, and biological and structural evaluations of novel HIV-1 protease inhibitors to combat drug resistance.

Parai, M.K.Huggins, D.J.Cao, H.Nalam, M.N.Ali, A.Schiffer, C.A.Tidor, B.Rana, T.M.

(2012) J Med Chem 55: 6328-6341

  • DOI: 10.1021/jm300238h
  • Primary Citation of Related Structures:  
    4DJR, 4DJO, 4DJP, 4DJQ

  • PubMed Abstract: 
  • A series of new HIV-1 protease inhibitors (PIs) were designed using a general strategy that combines computational structure-based design with substrate-envelope constraints. The PIs incorporate various alcohol-derived P2 carbamates with acyclic and ...

    A series of new HIV-1 protease inhibitors (PIs) were designed using a general strategy that combines computational structure-based design with substrate-envelope constraints. The PIs incorporate various alcohol-derived P2 carbamates with acyclic and cyclic heteroatomic functionalities into the (R)-hydroxyethylamine isostere. Most of the new PIs show potent binding affinities against wild-type HIV-1 protease and three multidrug resistant (MDR) variants. In particular, inhibitors containing the 2,2-dichloroacetamide, pyrrolidinone, imidazolidinone, and oxazolidinone moieties at P2 are the most potent with K(i) values in the picomolar range. Several new PIs exhibit nanomolar antiviral potencies against patient-derived wild-type viruses from HIV-1 clades A, B, and C and two MDR variants. Crystal structure analyses of four potent inhibitors revealed that carbonyl groups of the new P2 moieties promote extensive hydrogen bond interactions with the invariant Asp29 residue of the protease. These structure-activity relationship findings can be utilized to design new PIs with enhanced enzyme inhibitory and antiviral potencies.


    Organizational Affiliation

    Program for RNA Biology, Sanford-Burnham Medical Research Institute, La Jolla, CA 92037, USA.



Macromolecules
Find similar proteins by:  (by identity cutoff)  |  Structure
Entity ID: 1
MoleculeChainsSequence LengthOrganismDetailsImage
Pol polyproteinAB99Human immunodeficiency virus 1Mutation(s): 1 
Gene Names: gag-polpol
EC: 2.7.7.49 (UniProt), 3.1.26.13 (UniProt)
Find proteins for Q90K99 (Human immunodeficiency virus 1)
Explore Q90K99 
Go to UniProtKB:  Q90K99
Protein Feature View
Expand
  • Reference Sequence
Small Molecules
Ligands 2 Unique
IDChainsName / Formula / InChI Key2D Diagram3D Interactions
M86
Query on M86

Download CCD File 
A
2-(2-oxoimidazolidin-1-yl)ethyl [(2S,3R)-3-hydroxy-4-{[(4-methoxyphenyl)sulfonyl][(2S)-2-methylbutyl]amino}-1-phenylbutan-2-yl]carbamate
C28 H40 N4 O7 S
KVKPWRDMMABYRK-OUIFVKKZSA-N
 Ligand Interaction
PO4
Query on PO4

Download CCD File 
B
PHOSPHATE ION
O4 P
NBIIXXVUZAFLBC-UHFFFAOYSA-K
 Ligand Interaction
External Ligand Annotations 
IDBinding Affinity (Sequence Identity %)
M86Ki :  0.04800000041723251   nM  PDBBind
M86Ki:  0.04800000041723251   nM  Binding MOAD
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.40 Å
  • R-Value Free: 0.204 
  • R-Value Work: 0.179 
  • R-Value Observed: 0.180 
  • Space Group: P 21 21 21
Unit Cell:
Length ( Å )Angle ( ˚ )
a = 50.711α = 90
b = 57.93β = 90
c = 61.815γ = 90
Software Package:
Software NamePurpose
DENZOdata reduction
SCALEPACKdata scaling
REFMACrefinement
PDB_EXTRACTdata extraction
HKL-2000data collection
HKL-2000data reduction
AMoREphasing

Structure Validation

View Full Validation Report



Entry History 

Deposition Data

Revision History 

  • Version 1.0: 2012-08-01
    Type: Initial release
  • Version 1.1: 2013-01-02
    Changes: Database references
  • Version 1.2: 2017-11-15
    Changes: Refinement description