4D5K

Focal Adhesion Kinase catalytic domain


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.75 Å
  • R-Value Free: 0.214 
  • R-Value Work: 0.189 

wwPDB Validation 3D Report Full Report


This is version 1.1 of the entry. See complete history

Literature

Allosteric Regulation of Focal Adhesion Kinase by Pip2 and ATP.

Zhou, J.Bronowska, A.Le Coq, J.Lietha, D.Grater, F.

(2015) Biophys.J. 108: 698

  • DOI: 10.1016/j.bpj.2014.11.3454
  • Primary Citation of Related Structures:  

  • PubMed Abstract: 
  • Focal adhesion kinase (FAK) is a nonreceptor tyrosine kinase that regulates cell signaling, proliferation, migration, and development. A major mechanism of regulation of FAK activity is an intramolecular autoinhibitory interaction between two of its ...

    Focal adhesion kinase (FAK) is a nonreceptor tyrosine kinase that regulates cell signaling, proliferation, migration, and development. A major mechanism of regulation of FAK activity is an intramolecular autoinhibitory interaction between two of its domains--the catalytic and FERM domains. Upon cell adhesion to the extracellular matrix, FAK is being translocated toward focal adhesion sites and activated. Interactions of FAK with phosphoinositide phosphatidylinsositol-4,5-bis-phosphate (PIP₂) are required to activate FAK. However, the molecular mechanism of the activation remains poorly understood. Recent fluorescence resonance energy transfer experiments revealed a closure of the FERM-kinase interface upon ATP binding, which is reversed upon additional binding of PIP₂. Here, we addressed the allosteric regulation of FAK by performing all-atom molecular-dynamics simulations of a FAK fragment containing the catalytic and FERM domains, and comparing the dynamics in the absence or presence of ATP and PIP₂. As a major conformational change, we observe a closing and opening motion upon ATP and additional PIP₂ binding, respectively, in good agreement with the fluorescence resonance energy transfer experiments. To reveal how the binding of the regulatory PIP₂ to the FERM F2 lobe is transduced to the very distant F1/N-lobe interface, we employed force distribution analysis. We identified a network of mainly charged residue-residue interactions spanning from the PIP₂ binding site to the distant interface between the kinase and FERM domains, comprising candidate residues for mutagenesis to validate the predicted mechanism of FAK activation.


    Organizational Affiliation

    Heidelberg Institute for Theoretical Studies, Heidelberg, Germany.




Macromolecules

Find similar proteins by: Sequence  |  Structure

Entity ID: 1
MoleculeChainsSequence LengthOrganismDetails
FOCAL ADHESION KINASE
A, B
276Gallus gallusMutation(s): 0 
Gene Names: PTK2 (FAK, FAK1)
EC: 2.7.10.2
Find proteins for Q00944 (Gallus gallus)
Go to Gene View: PTK2
Go to UniProtKB:  Q00944
Small Molecules
Ligands 2 Unique
IDChainsName / Formula / InChI Key2D Diagram3D Interactions
SO4
Query on SO4

Download SDF File 
Download CCD File 
A, B
SULFATE ION
O4 S
QAOWNCQODCNURD-UHFFFAOYSA-L
 Ligand Interaction
DMS
Query on DMS

Download SDF File 
Download CCD File 
A
DIMETHYL SULFOXIDE
C2 H6 O S
IAZDPXIOMUYVGZ-UHFFFAOYSA-N
 Ligand Interaction
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.75 Å
  • R-Value Free: 0.214 
  • R-Value Work: 0.189 
  • Space Group: P 1 21 1
Unit Cell:
Length (Å)Angle (°)
a = 44.930α = 90.00
b = 122.852β = 94.76
c = 50.875γ = 90.00
Software Package:
Software NamePurpose
PHASERphasing
REFMACrefinement
SCALAdata scaling
XDSdata reduction

Structure Validation

View Full Validation Report or Ramachandran Plots



Entry History 

Deposition Data

Revision History 

  • Version 1.0: 2015-02-18
    Type: Initial release
  • Version 1.1: 2019-04-03
    Type: Data collection, Other, Source and taxonomy