4CQ4

C-terminal fragment of Af1503-sol: transmembrane receptor Af1503 from Archaeoglobus fulgidus engineered for solubility


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.7 Å
  • R-Value Free: 0.243 
  • R-Value Work: 0.193 

wwPDB Validation 3D Report Full Report


This is version 1.1 of the entry. See complete history

Literature

A Soluble Mutant of the Transmembrane Receptor Af1503 Features Strong Changes in Coiled-Coil Periodicity.

Hartmann, M.D.Dunin-Horkawicz, S.Hulko, M.Martin, J.Coles, M.Lupas, A.N.

(2014) J.Struct.Biol. 186: 357

  • DOI: 10.1016/j.jsb.2014.02.008

  • PubMed Abstract: 
  • Structures of full-length, membrane-bound proteins are essential for understanding transmembrane signaling mechanisms. However, in prokaryotic receptors no such structure has been reported, despite active research for many years. Here we present resu ...

    Structures of full-length, membrane-bound proteins are essential for understanding transmembrane signaling mechanisms. However, in prokaryotic receptors no such structure has been reported, despite active research for many years. Here we present results of an alternative strategy, whereby a transmembrane receptor is made soluble by selective mutations to the membrane-spanning region, chosen by analysis of helix geometry in the transmembrane regions of chemotaxis receptors. We thus converted the receptor Af1503 from Archaeoglobus fulgidus to a soluble form by deleting transmembrane helix 1 and mutating the surface residues of transmembrane helix 2 to hydrophilic amino acids. Crystallization of this protein resulted in the structure of a tetrameric proteolytic fragment representing the modified transmembrane helices plus the cytoplasmic HAMP domain, a ubiquitous domain of prokaryotic signal transducers. The protein forms a tetramer via native parallel dimerization of the HAMP domain and non-native antiparallel dimerization of the modified transmembrane helices. The latter results in a four-helical coiled coil, characterized by unusually large changes in helix periodicity. The structure offers the first view of the junction between the transmembrane region and HAMP and explains the conservation of a key sequence motif in HAMP domains.


    Organizational Affiliation

    Department of Protein Evolution, Max-Planck-Institute for Developmental Biology, 72076 Tübingen, Germany.




Macromolecules

Find similar proteins by: Sequence  |  Structure

Entity ID: 1
MoleculeChainsSequence LengthOrganismDetails
ENGINEERED VERSION OF TRANSMEMBRANE RECEPTOR AF1503
A, B, C, D
309Archaeoglobus fulgidus (strain ATCC 49558 / VC-16 / DSM 4304 / JCM 9628 / NBRC 100126)Mutation(s): 14 
Find proteins for O28769 (Archaeoglobus fulgidus (strain ATCC 49558 / VC-16 / DSM 4304 / JCM 9628 / NBRC 100126))
Go to UniProtKB:  O28769
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.7 Å
  • R-Value Free: 0.243 
  • R-Value Work: 0.193 
  • Space Group: P 1 21 1
Unit Cell:
Length (Å)Angle (°)
a = 44.069α = 90.00
b = 48.037β = 98.04
c = 95.187γ = 90.00
Software Package:
Software NamePurpose
XDSdata reduction
MOLREPphasing
REFMACrefinement
XDSdata scaling

Structure Validation

View Full Validation Report or Ramachandran Plots



Entry History 

Deposition Data

Revision History 

  • Version 1.0: 2014-03-12
    Type: Initial release
  • Version 1.1: 2014-06-11
    Type: Database references