4C6S

Crystal structure of the TIR domain from the Arabidopsis Thaliana disease resistance protein RRS1


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.75 Å
  • R-Value Free: 0.198 
  • R-Value Work: 0.182 
  • R-Value Observed: 0.183 

wwPDB Validation   3D Report Full Report



Literature

Structural Basis for Assembly and Function of a Heterodimeric Plant Immune Receptor.

Williams, S.J.Sohn, K.H.Wan, L.Bernoux, M.Sarris, P.F.Segonzac, C.Ve, T.Ma, Y.Saucet, S.B.Ericsson, D.J.Casey, L.W.Lonhienne, T.Winzor, D.J.Zhang, X.Coerdt, A.Parker, J.E.Dodds, P.N.Kobe, B.Jones, J.D.G.

(2014) Science 344: 299

  • DOI: 10.1126/science.1247357
  • Primary Citation of Related Structures:  
    4C6R, 4C6S, 4C6T

  • PubMed Abstract: 
  • Cytoplasmic plant immune receptors recognize specific pathogen effector proteins and initiate effector-triggered immunity. In Arabidopsis, the immune receptors RPS4 and RRS1 are both required to activate defense to three different pathogens. We show ...

    Cytoplasmic plant immune receptors recognize specific pathogen effector proteins and initiate effector-triggered immunity. In Arabidopsis, the immune receptors RPS4 and RRS1 are both required to activate defense to three different pathogens. We show that RPS4 and RRS1 physically associate. Crystal structures of the N-terminal Toll-interleukin-1 receptor/resistance (TIR) domains of RPS4 and RRS1, individually and as a heterodimeric complex (respectively at 2.05, 1.75, and 2.65 angstrom resolution), reveal a conserved TIR/TIR interaction interface. We show that TIR domain heterodimerization is required to form a functional RRS1/RPS4 effector recognition complex. The RPS4 TIR domain activates effector-independent defense, which is inhibited by the RRS1 TIR domain through the heterodimerization interface. Thus, RPS4 and RRS1 function as a receptor complex in which the two components play distinct roles in recognition and signaling.


    Organizational Affiliation

    School of Chemistry and Molecular Biosciences and Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, QLD 4072, Australia.



Macromolecules
Find similar proteins by:  (by identity cutoff)  |  Structure
Entity ID: 1
MoleculeChainsSequence LengthOrganismDetailsImage
PROBABLE WRKY TRANSCRIPTION FACTOR 52A150Arabidopsis thalianaMutation(s): 0 
Gene Names: RRS1RCH2RRS1-SRSH4SLH1WRKY52At5g45260/At5g45270K9E15.2/K9E15.3
Find proteins for P0DKH5 (Arabidopsis thaliana)
Explore P0DKH5 
Go to UniProtKB:  P0DKH5
Protein Feature View
Expand
  • Reference Sequence
Small Molecules
Ligands 3 Unique
IDChainsName / Formula / InChI Key2D Diagram3D Interactions
SO4
Query on SO4

Download CCD File 
A
SULFATE ION
O4 S
QAOWNCQODCNURD-UHFFFAOYSA-L
 Ligand Interaction
GOL
Query on GOL

Download CCD File 
A
GLYCEROL
C3 H8 O3
PEDCQBHIVMGVHV-UHFFFAOYSA-N
 Ligand Interaction
NA
Query on NA

Download CCD File 
A
SODIUM ION
Na
FKNQFGJONOIPTF-UHFFFAOYSA-N
 Ligand Interaction
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.75 Å
  • R-Value Free: 0.198 
  • R-Value Work: 0.182 
  • R-Value Observed: 0.183 
  • Space Group: P 43 21 2
Unit Cell:
Length ( Å )Angle ( ˚ )
a = 71.265α = 90
b = 71.265β = 90
c = 66.724γ = 90
Software Package:
Software NamePurpose
XDSdata reduction
Aimlessdata scaling
PHASERphasing
AutoSolphasing
PHENIXrefinement

Structure Validation

View Full Validation Report



Entry History 

Deposition Data

Revision History 

  • Version 1.0: 2014-05-28
    Type: Initial release