4BTH

The LeuA146Trp,PheB24Tyr Double Mutant of the Quorum Quenching N-acyl Homoserine Lactone Acylase PvdQ Has an Altered Substrate Specificity Towards Small Acyl Chains


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.90 Å
  • R-Value Free: 0.207 
  • R-Value Work: 0.179 
  • R-Value Observed: 0.181 

wwPDB Validation   3D Report Full Report


This is version 1.3 of the entry. See complete history


Literature

Reducing Virulence of the Human Pathogen Burkholderia by Altering the Substrate Specificity of the Quorum-Quenching Acylase Pvdq

Koch, G.Nadal-Jimenez, P.Reis, C.R.Muntendam, R.Bokhove, M.Melillo, E.Dijkstra, B.W.Cool, R.H.Quax, W.J.

(2014) Proc Natl Acad Sci U S A 111: 1568

  • DOI: https://doi.org/10.1073/pnas.1311263111
  • Primary Citation of Related Structures:  
    4BTH

  • PubMed Abstract: 

    The use of enzymes to interfere with quorum sensing represents an attractive strategy to fight bacterial infections. We used PvdQ, an effective quorum-quenching enzyme from Pseudomonas aeruginosa, as a template to generate an acylase able to effectively hydrolyze C8-HSL, the major communication molecule produced by the Burkholderia species. We discovered that the combination of two single mutations leading to variant PvdQ(Lα146W,Fβ24Y) conferred high activity toward C8-HSL. Exogenous addition of PvdQ(Lα146W,Fβ24Y) dramatically decreased the amount of C8-HSL present in Burkholderia cenocepacia cultures and inhibited a quorum sensing-associated phenotype. The efficacy of this PvdQ variant to combat infections in vivo was further confirmed by its ability to rescue Galleria mellonella larvae upon infection, demonstrating its potential as an effective agent toward Burkholderia infections. Kinetic analysis of the enzymatic activities toward 3-oxo-C12-L-HSL and C8-L-HSL corroborated a substrate switch. This work demonstrates the effectiveness of quorum-quenching acylases as potential novel antimicrobial drugs. In addition, we demonstrate that their substrate range can be easily switched, thereby paving the way to selectively target only specific bacterial species inside a complex microbial community.


  • Organizational Affiliation

    Department of Pharmaceutical Biology, University of Groningen, 9713 AV, Groningen, The Netherlands.


Macromolecules
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 1
MoleculeChains Sequence LengthOrganismDetailsImage
ACYL-HOMOSERINE LACTONE ACYLASE PVDQ SUBUNIT ALPHA170Pseudomonas aeruginosa PAO1Mutation(s): 1 
EC: 3.5.1.97
UniProt
Find proteins for Q9I194 (Pseudomonas aeruginosa (strain ATCC 15692 / DSM 22644 / CIP 104116 / JCM 14847 / LMG 12228 / 1C / PRS 101 / PAO1))
Explore Q9I194 
Go to UniProtKB:  Q9I194
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
UniProt GroupQ9I194
Sequence Annotations
Expand
  • Reference Sequence
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 2
MoleculeChains Sequence LengthOrganismDetailsImage
ACYL-HOMOSERINE LACTONE ACYLASE PVDQ SUBUNIT BETA546Pseudomonas aeruginosa PAO1Mutation(s): 1 
EC: 3.5.1.97
UniProt
Find proteins for Q9I194 (Pseudomonas aeruginosa (strain ATCC 15692 / DSM 22644 / CIP 104116 / JCM 14847 / LMG 12228 / 1C / PRS 101 / PAO1))
Explore Q9I194 
Go to UniProtKB:  Q9I194
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
UniProt GroupQ9I194
Sequence Annotations
Expand
  • Reference Sequence
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.90 Å
  • R-Value Free: 0.207 
  • R-Value Work: 0.179 
  • R-Value Observed: 0.181 
  • Space Group: C 2 2 21
Unit Cell:
Length ( Å )Angle ( ˚ )
a = 121.353α = 90
b = 167.133β = 90
c = 94.443γ = 90
Software Package:
Software NamePurpose
REFMACrefinement
XDSdata reduction
SCALAdata scaling
PHASERphasing

Structure Validation

View Full Validation Report



Entry History 

Deposition Data

Revision History  (Full details and data files)

  • Version 1.0: 2014-01-22
    Type: Initial release
  • Version 1.1: 2014-02-05
    Changes: Database references
  • Version 1.2: 2014-02-12
    Changes: Database references
  • Version 1.3: 2023-12-20
    Changes: Data collection, Database references, Derived calculations, Other, Refinement description