4BNC

Crystal structure of the DNA-binding domain of human ETV1 complexed with DNA


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.90 Å
  • R-Value Free: 0.223 
  • R-Value Work: 0.206 
  • R-Value Observed: 0.207 

wwPDB Validation   3D Report Full Report


This is version 1.2 of the entry. See complete history


Literature

Structures of the Ets Domains of Transcription Factors Etv1, Etv4, Etv5 and Fev: Determinants of DNA Binding and Redox Regulation by Disulfide Bond Formation.

Cooper, C.D.O.Newman, J.A.Aitkenhead, H.Allerston, C.K.Gileadi, O.

(2015) J Biol Chem 290: 13692

  • DOI: 10.1074/jbc.M115.646737
  • Primary Citation of Related Structures:  
    3ZP5, 2YPR, 4UUV, 4UNO, 4AVP, 4BNC, 4CO8

  • PubMed Abstract: 
  • Ets transcription factors, which share the conserved Ets DNA-binding domain, number nearly 30 members in humans and are particularly involved in developmental processes. Their deregulation following changes in expression, transcriptional activity, or by chromosomal translocation plays a critical role in carcinogenesis ...

    Ets transcription factors, which share the conserved Ets DNA-binding domain, number nearly 30 members in humans and are particularly involved in developmental processes. Their deregulation following changes in expression, transcriptional activity, or by chromosomal translocation plays a critical role in carcinogenesis. Ets DNA binding, selectivity, and regulation have been extensively studied; however, questions still arise regarding binding specificity outside the core GGA recognition sequence and the mode of action of Ets post-translational modifications. Here, we report the crystal structures of Etv1, Etv4, Etv5, and Fev, alone and in complex with DNA. We identify previously unrecognized features of the protein-DNA interface. Interactions with the DNA backbone account for most of the binding affinity. We describe a highly coordinated network of water molecules acting in base selection upstream of the GGAA core and the structural features that may account for discrimination against methylated cytidine residues. Unexpectedly, all proteins crystallized as disulfide-linked dimers, exhibiting a novel interface (distant to the DNA recognition helix). Homodimers of Etv1, Etv4, and Etv5 could be reduced to monomers, leading to a 40-200-fold increase in DNA binding affinity. Hence, we present the first indication of a redox-dependent regulatory mechanism that may control the activity of this subset of oncogenic Ets transcription factors.


    Organizational Affiliation

    From the Structural Genomics Consortium, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, United Kingdom opher.gileadi@sgc.ox.ac.uk.



Macromolecules

Find similar proteins by:  (by identity cutoff)  |  Structure
Entity ID: 1
MoleculeChainsSequence LengthOrganismDetailsImage
HUMAN ETV1A106Homo sapiensMutation(s): 0 
Gene Names: ETV1ER81
Find proteins for P50549 (Homo sapiens)
Explore P50549 
Go to UniProtKB:  P50549
NIH Common Fund Data Resources
PHAROS:  P50549
Protein Feature View
Expand
  • Reference Sequence
  • Find similar nucleic acids by:  Sequence   |   Structure
  • Entity ID: 2
    MoleculeChainsLengthOrganismImage
    5'-D(*AP*CP*CP*GP*GP*AP*AP*GP*TP*GP)-3'B10Homo sapiens
    • Find similar nucleic acids by:  Sequence   |   Structure
    • Entity ID: 3
      MoleculeChainsLengthOrganismImage
      5'-D(*CP*AP*CP*TP*TP*CP*CP*GP*GP*TP)-3'C10Homo sapiens
      Experimental Data & Validation

      Experimental Data

      • Method: X-RAY DIFFRACTION
      • Resolution: 2.90 Å
      • R-Value Free: 0.223 
      • R-Value Work: 0.206 
      • R-Value Observed: 0.207 
      • Space Group: P 43 2 2
      Unit Cell:
      Length ( Å )Angle ( ˚ )
      a = 64.883α = 90
      b = 64.883β = 90
      c = 129.587γ = 90
      Software Package:
      Software NamePurpose
      BUSTERrefinement
      XDSdata reduction
      SCALAdata scaling
      SHARPphasing

      Structure Validation

      View Full Validation Report



      Entry History 

      Deposition Data

      Revision History  (Full details and data files)

      • Version 1.0: 2013-07-03
        Type: Initial release
      • Version 1.1: 2015-04-29
        Changes: Database references
      • Version 1.2: 2015-06-10
        Changes: Database references