4B48

Bacterial translation initiation factor IF2 (1-363), complex with GTP


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.80 Å
  • R-Value Free: 0.294 
  • R-Value Work: 0.234 
  • R-Value Observed: 0.237 

wwPDB Validation   3D Report Full Report


Ligand Structure Quality Assessment 


This is version 1.2 of the entry. See complete history


Literature

Structure of the Protein Core of Translation Initiation Factor 2 in Apo, GTP-Bound and Gdp-Bound Forms

Simonetti, A.Marzi, S.Fabbretti, A.Hazemann, I.Jenner, L.Urzhumtsev, A.Gualerzi, C.O.Klaholz, B.P.

(2013) Acta Crystallogr D Biol Crystallogr 69: 925

  • DOI: https://doi.org/10.1107/S0907444913006422
  • Primary Citation of Related Structures:  
    4B3X, 4B47, 4B48

  • PubMed Abstract: 

    Translation initiation factor 2 (IF2) is involved in the early steps of bacterial protein synthesis. It promotes the stabilization of the initiator tRNA on the 30S initiation complex (IC) and triggers GTP hydrolysis upon ribosomal subunit joining. While the structure of an archaeal homologue (a/eIF5B) is known, there are significant sequence and functional differences in eubacterial IF2, while the trimeric eukaryotic IF2 is completely unrelated. Here, the crystal structure of the apo IF2 protein core from Thermus thermophilus has been determined by MAD phasing and the structures of GTP and GDP complexes were also obtained. The IF2-GTP complex was trapped by soaking with GTP in the cryoprotectant. The structures revealed conformational changes of the protein upon nucleotide binding, in particular in the P-loop region, which extend to the functionally relevant switch II region. The latter carries a catalytically important and conserved histidine residue which is observed in different conformations in the GTP and GDP complexes. Overall, this work provides the first crystal structure of a eubacterial IF2 and suggests that activation of GTP hydrolysis may occur by a conformational repositioning of the histidine residue.


  • Organizational Affiliation

    Department of Integrated Structural Biology, IGBMC (Institute of Genetics and of Molecular and Cellular Biology), Centre National de la Recherche Scientifique (CNRS) UMR 7104/Institut National de la Santé de la Recherche Médicale (INSERM) U964/Université de Strasbourg, 1 Rue Laurent Fries, 67404 Illkirch, France.


Macromolecules
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 1
MoleculeChains Sequence LengthOrganismDetailsImage
TRANSLATION INITIATION FACTOR IF-2363Thermus thermophilus HB8Mutation(s): 0 
UniProt
Find proteins for P48515 (Thermus thermophilus (strain ATCC 27634 / DSM 579 / HB8))
Explore P48515 
Go to UniProtKB:  P48515
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
UniProt GroupP48515
Sequence Annotations
Expand
  • Reference Sequence
Small Molecules
Ligands 2 Unique
IDChains Name / Formula / InChI Key2D Diagram3D Interactions
GTP
Query on GTP

Download Ideal Coordinates CCD File 
B [auth A]GUANOSINE-5'-TRIPHOSPHATE
C10 H16 N5 O14 P3
XKMLYUALXHKNFT-UUOKFMHZSA-N
MG
Query on MG

Download Ideal Coordinates CCD File 
C [auth A]MAGNESIUM ION
Mg
JLVVSXFLKOJNIY-UHFFFAOYSA-N
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.80 Å
  • R-Value Free: 0.294 
  • R-Value Work: 0.234 
  • R-Value Observed: 0.237 
  • Space Group: P 21 21 21
Unit Cell:
Length ( Å )Angle ( ˚ )
a = 45.02α = 90
b = 61.95β = 90
c = 160.42γ = 90
Software Package:
Software NamePurpose
PHENIXrefinement
XDSdata reduction
XDSdata scaling
PHENIXphasing

Structure Validation

View Full Validation Report



Ligand Structure Quality Assessment 


Entry History 

Deposition Data

Revision History  (Full details and data files)

  • Version 1.0: 2013-05-29
    Type: Initial release
  • Version 1.1: 2013-06-05
    Changes: Database references
  • Version 1.2: 2023-12-20
    Changes: Data collection, Database references, Derived calculations, Other, Refinement description