3X17

Crystal structure of metagenome-derived glycoside hydrolase family 9 endoglucanase


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.15 Å
  • R-Value Free: 0.246 
  • R-Value Work: 0.187 
  • R-Value Observed: 0.190 

wwPDB Validation   3D Report Full Report


This is version 1.1 of the entry. See complete history


Literature

Structure, activity, and stability of metagenome-derived glycoside hydrolase family 9 endoglucanase with an N-terminal Ig-like domain.

Okano, H.Kanaya, E.Ozaki, M.Angkawidjaja, C.Kanaya, S.

(2015) Protein Sci 24: 408-419

  • DOI: https://doi.org/10.1002/pro.2632
  • Primary Citation of Related Structures:  
    3X17

  • PubMed Abstract: 
  • A metagenome-derived glycoside hydrolase family 9 enzyme with an N-terminal immunoglobulin-like (Ig-like) domain, leaf-branch compost (LC)-CelG, was characterized and its crystal structure was determined. LC-CelG did not hydrolyze p-nitrophenyl cellobioside but hydrolyzed CM-cellulose, indicating that it is endoglucanase ...

    A metagenome-derived glycoside hydrolase family 9 enzyme with an N-terminal immunoglobulin-like (Ig-like) domain, leaf-branch compost (LC)-CelG, was characterized and its crystal structure was determined. LC-CelG did not hydrolyze p-nitrophenyl cellobioside but hydrolyzed CM-cellulose, indicating that it is endoglucanase. LC-CelG exhibited the highest activity at 70°C and >80% of the maximal activity at a broad pH range of 5-9. Its denaturation temperature was 81.4°C, indicating that LC-CelG is a thermostable enzyme. The structure of LC-CelG resembles those of CelD from Clostridium thermocellum (CtCelD), Cel9A from Alicyclobacillus acidocaldarius (AaCel9A), and cellobiohydrolase CbhA from C. thermocellum (CtCbhA), which show relatively low (29-31%) amino acid sequence identities to LC-CelG. Three acidic active site residues are conserved as Asp194, Asp197, and Glu558 in LC-CelG. Ten of the thirteen residues that form the substrate binding pocket of AaCel9A are conserved in LC-CelG. Removal of the Ig-like domain reduced the activity and stability of LC-CelG by 100-fold and 6.3°C, respectively. Removal of the Gln40- and Asp99-mediated interactions between the Ig-like and catalytic domains destabilized LC-CelG by 5.0°C without significantly affecting its activity. These results suggest that the Ig-like domain contributes to the stabilization of LC-CelG mainly due to the Gln40- and Asp99-mediated interactions. Because the LC-CelG derivative lacking the Ig-like domain accumulated in Escherichia coli cells mostly in an insoluble form and this derivative accumulated in a soluble form exhibited very weak activity, the Ig-like domain may be required to make the conformation of the active site functional and prevent aggregation of the catalytic domain.


    Organizational Affiliation

    Department of Material and Life Science, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan.



Macromolecules
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 1
MoleculeChainsSequence LengthOrganismDetailsImage
EndoglucanaseA [auth B],
B [auth A]
559uncultured bacteriumMutation(s): 0 
EC: 3.2.1.4
UniProt
Find proteins for W8PF21 (uncultured bacterium)
Explore W8PF21 
Go to UniProtKB:  W8PF21
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
UniProt GroupW8PF21
Protein Feature View
Expand
  • Reference Sequence
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.15 Å
  • R-Value Free: 0.246 
  • R-Value Work: 0.187 
  • R-Value Observed: 0.190 
  • Space Group: P 21 21 21
Unit Cell:
Length ( Å )Angle ( ˚ )
a = 84.631α = 90
b = 89.913β = 90
c = 151.157γ = 90
Software Package:
Software NamePurpose
HKL-2000data collection
MOLREPphasing
REFMACrefinement
HKL-2000data reduction
HKL-2000data scaling

Structure Validation

View Full Validation Report



Entry History 

Deposition Data

Revision History  (Full details and data files)

  • Version 1.0: 2015-01-21
    Type: Initial release
  • Version 1.1: 2022-08-24
    Changes: Database references, Derived calculations