3X17

Crystal structure of metagenome-derived glycoside hydrolase family 9 endoglucanase


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.15 Å
  • R-Value Free: 0.246 
  • R-Value Work: 0.187 
  • R-Value Observed: 0.190 

wwPDB Validation   3D Report Full Report


This is version 1.2 of the entry. See complete history


Literature

Structure, activity, and stability of metagenome-derived glycoside hydrolase family 9 endoglucanase with an N-terminal Ig-like domain.

Okano, H.Kanaya, E.Ozaki, M.Angkawidjaja, C.Kanaya, S.

(2015) Protein Sci 24: 408-419

  • DOI: https://doi.org/10.1002/pro.2632
  • Primary Citation of Related Structures:  
    3X17

  • PubMed Abstract: 

    A metagenome-derived glycoside hydrolase family 9 enzyme with an N-terminal immunoglobulin-like (Ig-like) domain, leaf-branch compost (LC)-CelG, was characterized and its crystal structure was determined. LC-CelG did not hydrolyze p-nitrophenyl cellobioside but hydrolyzed CM-cellulose, indicating that it is endoglucanase. LC-CelG exhibited the highest activity at 70°C and >80% of the maximal activity at a broad pH range of 5-9. Its denaturation temperature was 81.4°C, indicating that LC-CelG is a thermostable enzyme. The structure of LC-CelG resembles those of CelD from Clostridium thermocellum (CtCelD), Cel9A from Alicyclobacillus acidocaldarius (AaCel9A), and cellobiohydrolase CbhA from C. thermocellum (CtCbhA), which show relatively low (29-31%) amino acid sequence identities to LC-CelG. Three acidic active site residues are conserved as Asp194, Asp197, and Glu558 in LC-CelG. Ten of the thirteen residues that form the substrate binding pocket of AaCel9A are conserved in LC-CelG. Removal of the Ig-like domain reduced the activity and stability of LC-CelG by 100-fold and 6.3°C, respectively. Removal of the Gln40- and Asp99-mediated interactions between the Ig-like and catalytic domains destabilized LC-CelG by 5.0°C without significantly affecting its activity. These results suggest that the Ig-like domain contributes to the stabilization of LC-CelG mainly due to the Gln40- and Asp99-mediated interactions. Because the LC-CelG derivative lacking the Ig-like domain accumulated in Escherichia coli cells mostly in an insoluble form and this derivative accumulated in a soluble form exhibited very weak activity, the Ig-like domain may be required to make the conformation of the active site functional and prevent aggregation of the catalytic domain.


  • Organizational Affiliation

    Department of Material and Life Science, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan.


Macromolecules
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 1
MoleculeChains Sequence LengthOrganismDetailsImage
EndoglucanaseA [auth B],
B [auth A]
559uncultured bacteriumMutation(s): 0 
EC: 3.2.1.4
UniProt
Find proteins for W8PF21 (uncultured bacterium)
Explore W8PF21 
Go to UniProtKB:  W8PF21
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
UniProt GroupW8PF21
Sequence Annotations
Expand
  • Reference Sequence
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.15 Å
  • R-Value Free: 0.246 
  • R-Value Work: 0.187 
  • R-Value Observed: 0.190 
  • Space Group: P 21 21 21
Unit Cell:
Length ( Å )Angle ( ˚ )
a = 84.631α = 90
b = 89.913β = 90
c = 151.157γ = 90
Software Package:
Software NamePurpose
HKL-2000data collection
MOLREPphasing
REFMACrefinement
HKL-2000data reduction
HKL-2000data scaling

Structure Validation

View Full Validation Report



Entry History 

Deposition Data

Revision History  (Full details and data files)

  • Version 1.0: 2015-01-21
    Type: Initial release
  • Version 1.1: 2022-08-24
    Changes: Database references, Derived calculations
  • Version 1.2: 2023-11-08
    Changes: Data collection, Refinement description