3E1X

The Crystal Structure of Apo Prostasin at 1.7 Angstroms Resolution


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.70 Å
  • R-Value Free: 0.215 
  • R-Value Work: 0.168 
  • R-Value Observed: 0.172 

wwPDB Validation 3D Report Full Report


This is version 1.1 of the entry. See complete history


Literature

Active site conformational changes of prostasin provide a new mechanism of protease regulation by divalent cations.

Spraggon, G.Hornsby, M.Shipway, A.Tully, D.C.Bursulaya, B.Danahay, H.Harris, J.L.Lesley, S.A.

(2009) Protein Sci 18: 1081-1094

  • DOI: 10.1002/pro.118
  • Primary Citation of Related Structures:  
    3E0N, 3E1X, 3FVF, 3GYM, 3GYL

  • PubMed Abstract: 
  • Prostasin or human channel-activating protease 1 has been reported to play a critical role in the regulation of extracellular sodium ion transport via its activation of the epithelial cell sodium channel. Here, the structure of the extracellular port ...

    Prostasin or human channel-activating protease 1 has been reported to play a critical role in the regulation of extracellular sodium ion transport via its activation of the epithelial cell sodium channel. Here, the structure of the extracellular portion of the membrane associated serine protease has been solved to high resolution in complex with a nonselective d-FFR chloromethyl ketone inhibitor, in an apo form, in a form where the apo crystal has been soaked with the covalent inhibitor camostat and in complex with the protein inhibitor aprotinin. It was also crystallized in the presence of the divalent cation Ca(+2). Comparison of the structures with each other and with other members of the trypsin-like serine protease family reveals unique structural features of prostasin and a large degree of conformational variation within specificity determining loops. Of particular interest is the S1 subsite loop which opens and closes in response to basic residues or divalent ions, directly binding Ca(+2) cations. This induced fit active site provides a new possible mode of regulation of trypsin-like proteases adapted in particular to extracellular regions with variable ionic concentrations such as the outer membrane layer of the epithelial cell.


    Organizational Affiliation

    Genomics Institute of the Novartis Research Foundation, 10675 John Jay Hopkins Drive, San Diego, California 92121, USA. gspraggo@gnf.org



Macromolecules
Find similar proteins by:  (by identity cutoff)  |  Structure
Entity ID: 1
MoleculeChainsSequence LengthOrganismDetailsImage
ProstasinB271Homo sapiensMutation(s): 3 
Gene Names: PRSS8
EC: 3.4.21
Find proteins for Q16651 (Homo sapiens)
Explore Q16651 
Go to UniProtKB:  Q16651
NIH Common Fund Data Resources
PHAROS  Q16651
Protein Feature View
Expand
 ( Mouse scroll to zoom / Hold left click to move )
  • Reference Sequence
Small Molecules
Ligands 1 Unique
IDChainsName / Formula / InChI Key2D Diagram3D Interactions
GOL
Query on GOL

Download CCD File 
B
GLYCEROL
C3 H8 O3
PEDCQBHIVMGVHV-UHFFFAOYSA-N
 Ligand Interaction
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.70 Å
  • R-Value Free: 0.215 
  • R-Value Work: 0.168 
  • R-Value Observed: 0.172 
  • Space Group: P 21 21 21
Unit Cell:
Length ( Å )Angle ( ˚ )
a = 53.556α = 90
b = 54.071β = 90
c = 82.678γ = 90
Software Package:
Software NamePurpose
PHENIXrefinement
ADSCdata collection
HKL-2000data reduction
HKL-2000data scaling
MOLREPphasing

Structure Validation

View Full Validation Report



Entry History 

Deposition Data

Revision History 

  • Version 1.0: 2009-05-05
    Type: Initial release
  • Version 1.1: 2011-07-13
    Changes: Non-polymer description, Version format compliance