3DKP

Human DEAD-box RNA-helicase DDX52, conserved domain I in complex with ADP


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.10 Å
  • R-Value Free: 0.236 
  • R-Value Work: 0.182 
  • R-Value Observed: 0.185 

wwPDB Validation 3D Report Full Report


This is version 1.1 of the entry. See complete history


Literature

Comparative Structural Analysis of Human DEAD-Box RNA Helicases.

Schutz, P.Karlberg, T.van den Berg, S.Collins, R.Lehtio, L.Hogbom, M.Holmberg-Schiavone, L.Tempel, W.Park, H.W.Hammarstrom, M.Moche, M.Thorsell, A.G.Schuler, H.

(2010) PLoS One 5: 12791-12791

  • DOI: 10.1371/journal.pone.0012791
  • Primary Citation of Related Structures:  
    2RB4, 2PL3, 2P6N, 2G9N, 3B7G, 3BER, 3BOR, 3LY5, 3DKP, 3FE2

  • PubMed Abstract: 
  • DEAD-box RNA helicases play various, often critical, roles in all processes where RNAs are involved. Members of this family of proteins are linked to human disease, including cancer and viral infections. DEAD-box proteins contain two conserved domain ...

    DEAD-box RNA helicases play various, often critical, roles in all processes where RNAs are involved. Members of this family of proteins are linked to human disease, including cancer and viral infections. DEAD-box proteins contain two conserved domains that both contribute to RNA and ATP binding. Despite recent advances the molecular details of how these enzymes convert chemical energy into RNA remodeling is unknown. We present crystal structures of the isolated DEAD-domains of human DDX2A/eIF4A1, DDX2B/eIF4A2, DDX5, DDX10/DBP4, DDX18/myc-regulated DEAD-box protein, DDX20, DDX47, DDX52/ROK1, and DDX53/CAGE, and of the helicase domains of DDX25 and DDX41. Together with prior knowledge this enables a family-wide comparative structural analysis. We propose a general mechanism for opening of the RNA binding site. This analysis also provides insights into the diversity of DExD/H- proteins, with implications for understanding the functions of individual family members.


    Organizational Affiliation

    Structural Genomics Consortium, Karolinska Institutet, Stockholm, Sweden.



Macromolecules
Find similar proteins by:  (by identity cutoff)  |  Structure
Entity ID: 1
MoleculeChainsSequence LengthOrganismDetailsImage
Probable ATP-dependent RNA helicase DDX52A245Homo sapiensMutation(s): 0 
Gene Names: DDX52ROK1HUSSY-19
EC: 3.6.1 (PDB Primary Data), 3.6.4.13 (UniProt)
Find proteins for Q9Y2R4 (Homo sapiens)
Explore Q9Y2R4 
Go to UniProtKB:  Q9Y2R4
NIH Common Fund Data Resources
PHAROS  Q9Y2R4
Protein Feature View
Expand
 ( Mouse scroll to zoom / Hold left click to move )
  • Reference Sequence
Small Molecules
Ligands 3 Unique
IDChainsName / Formula / InChI Key2D Diagram3D Interactions
ADP
Query on ADP

Download CCD File 
A
ADENOSINE-5'-DIPHOSPHATE
C10 H15 N5 O10 P2
XTWYTFMLZFPYCI-KQYNXXCUSA-N
 Ligand Interaction
GOL
Query on GOL

Download CCD File 
A
GLYCEROL
C3 H8 O3
PEDCQBHIVMGVHV-UHFFFAOYSA-N
 Ligand Interaction
MG
Query on MG

Download CCD File 
A
MAGNESIUM ION
Mg
JLVVSXFLKOJNIY-UHFFFAOYSA-N
 Ligand Interaction
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.10 Å
  • R-Value Free: 0.236 
  • R-Value Work: 0.182 
  • R-Value Observed: 0.185 
  • Space Group: P 1 21 1
Unit Cell:
Length ( Å )Angle ( ˚ )
a = 40.63α = 90
b = 38.36β = 90.37
c = 73.84γ = 90
Software Package:
Software NamePurpose
REFMACrefinement
MxCuBEdata collection
XDSdata reduction
XSCALEdata scaling
MOLREPphasing

Structure Validation

View Full Validation Report



Entry History 

Revision History 

  • Version 1.0: 2008-08-12
    Type: Initial release
  • Version 1.1: 2011-07-13
    Changes: Advisory, Version format compliance