3BKQ

Structure of the P368G mutant of PMM/PGM in complex with its substrate


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.05 Å
  • R-Value Free: 0.249 
  • R-Value Work: 0.218 
  • R-Value Observed: 0.220 

wwPDB Validation 3D Report Full Report


This is version 1.2 of the entry. See complete history


Literature

Backbone flexibility, conformational change, and catalysis in a phosphohexomutase from Pseudomonas aeruginosa.

Schramm, A.M.Mehra-Chaudhary, R.Furdui, C.M.Beamer, L.J.

(2008) Biochemistry 47: 9154-9162

  • DOI: 10.1021/bi8005219
  • Structures With Same Primary Citation

  • PubMed Abstract: 
  • The enzyme phosphomannomutase/phosphoglucomutase (PMM/PGM) from the bacterium Pseudomonas aeruginosa is involved in the biosynthesis of several complex carbohydrates, including alginate, lipopolysaccharide, and rhamnolipid. Previous structural studie ...

    The enzyme phosphomannomutase/phosphoglucomutase (PMM/PGM) from the bacterium Pseudomonas aeruginosa is involved in the biosynthesis of several complex carbohydrates, including alginate, lipopolysaccharide, and rhamnolipid. Previous structural studies of this protein have shown that binding of substrates produces a rotation of the C-terminal domain, changing the active site from an open cleft in the apoenzyme into a deep, solvent inaccessible pocket where phosphoryl transfer takes place. We report herein site-directed mutagenesis, kinetic, and structural studies in examining the role of residues in the hinge between domains 3 and 4, as well as residues that participate in enzyme-substrate contacts and help form the multidomain "lid" of the active site. We find that the backbone flexibility of residues in the hinge region (e.g., mutation of proline to glycine/alanine) affects the efficiency of the reaction, decreasing k cat by approximately 10-fold and increasing K m by approximately 2-fold. Moreover, thermodynamic analyses show that these changes are due primarily to entropic effects, consistent with an increase in the flexibility of the polypeptide backbone leading to a decreased probability of forming a catalytically productive active site. These results for the hinge residues contrast with those for mutants in the active site of the enzyme, which have profound effects on enzyme kinetics (10 (2)-10 (3)-fold decrease in k cat/ K m) and also show substantial differences in their thermodynamic parameters relative to those of the wild-type (WT) enzyme. These studies support the concept that polypeptide flexibility in protein hinges may evolve to optimize and tune reaction rates.


    Organizational Affiliation

    Department of Biochemistry, University of Missouri, Columbia, Missouri 65211, USA.



Macromolecules

Find similar proteins by: Sequence  |  Structure

Entity ID: 1
MoleculeChainsSequence LengthOrganismDetails
Phosphomannomutase/phosphoglucomutaseX463N/AMutation(s): 1 
Gene Names: algC
EC: 5.4.2.8 (PDB Primary Data), 5.4.2.2 (PDB Primary Data)
Find proteins for P26276 (Pseudomonas aeruginosa (strain ATCC 15692 / DSM 22644 / CIP 104116 / JCM 14847 / LMG 12228 / 1C / PRS 101 / PAO1))
Explore P26276 
Go to UniProtKB:  P26276
Protein Feature View
 ( Mouse scroll to zoom / Hold left click to move )
  • Reference Sequence
Small Molecules
Ligands 2 Unique
IDChainsName / Formula / InChI Key2D Diagram3D Interactions
G1P
Query on G1P

Download CCD File 
X
1-O-phosphono-alpha-D-glucopyranose
C6 H13 O9 P
HXXFSFRBOHSIMQ-VFUOTHLCSA-N
 Ligand Interaction
ZN
Query on ZN

Download CCD File 
X
ZINC ION
Zn
PTFCDOFLOPIGGS-UHFFFAOYSA-N
 Ligand Interaction
Modified Residues  1 Unique
IDChainsTypeFormula2D DiagramParent
SEP
Query on SEP
XL-PEPTIDE LINKINGC3 H8 N O6 PSER
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.05 Å
  • R-Value Free: 0.249 
  • R-Value Work: 0.218 
  • R-Value Observed: 0.220 
  • Space Group: P 21 21 21
Unit Cell:
Length ( Å )Angle ( ˚ )
a = 70.604α = 90
b = 74.74β = 90
c = 86.924γ = 90
Software Package:
Software NamePurpose
REFMACrefinement
d*TREKdata reduction
d*TREKdata scaling

Structure Validation

View Full Validation Report



Entry History 

Deposition Data

Revision History 

  • Version 1.0: 2008-09-09
    Type: Initial release
  • Version 1.1: 2011-07-13
    Changes: Advisory, Version format compliance
  • Version 1.2: 2020-07-29
    Type: Remediation
    Reason: Carbohydrate remediation
    Changes: Data collection, Derived calculations, Structure summary