3ZJD

A20 OTU domain in reduced, active state at 1.87 A resolution


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.87 Å
  • R-Value Free: 0.217 
  • R-Value Work: 0.182 

wwPDB Validation 3D Report Full Report


This is version 1.1 of the entry. See complete history

Literature

Regulation of A20 and Other Otu Deubiquitinases by Reversible Oxidation

Kulathu, Y.Garcia, F.J.Mevissen, T.E.T.Busch, M.Arnaudo, N.Carroll, K.S.Barford, D.Komander, D.

(2013) Nat.Commun. 4: 1569

  • DOI: 10.1038/ncomms2567
  • Primary Citation of Related Structures:  

  • PubMed Abstract: 
  • Protein ubiquitination is a highly versatile post-translational modification that regulates as diverse processes as protein degradation and kinase activation. Deubiquitinases hydrolyse ubiquitin modifications from proteins and are hence key regulator ...

    Protein ubiquitination is a highly versatile post-translational modification that regulates as diverse processes as protein degradation and kinase activation. Deubiquitinases hydrolyse ubiquitin modifications from proteins and are hence key regulators of the ubiquitin system. Ovarian tumour deubiquitinases comprise a family of fourteen human enzymes, many of which regulate cellular signalling pathways. Ovarian tumour deubiquitinases are cysteine proteases that cleave polyubiquitin chains in vitro and in cells, but little is currently known about their regulation. Here we show that ovarian tumour deubiquitinases are susceptible to reversible oxidation of the catalytic cysteine residue. High-resolution crystal structures of the catalytic domain of A20 in four different oxidation states reveal that the reversible form of A20 oxidation is a cysteine sulphenic acid intermediate, which is stabilised by the architecture of the catalytic centre. Using chemical tools to detect sulphenic acid intermediates, we show that many ovarian tumour deubiquitinases undergo reversible oxidation upon treatment with H2O2, revealing a new mechanism to regulate deubiquitinase activity.


    Organizational Affiliation

    Division of Protein and Nucleic Acid Chemistry, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK.




Macromolecules

Find similar proteins by: Sequence  |  Structure

Entity ID: 1
MoleculeChainsSequence LengthOrganismDetails
A20P50
A, B
366Homo sapiensMutation(s): 1 
Gene Names: TNFAIP3 (OTUD7C)
EC: 2.3.2.-, 3.4.19.12
Find proteins for P21580 (Homo sapiens)
Go to Gene View: TNFAIP3
Go to UniProtKB:  P21580
Small Molecules
Ligands 2 Unique
IDChainsName / Formula / InChI Key2D Diagram3D Interactions
CL
Query on CL

Download SDF File 
Download CCD File 
A, B
CHLORIDE ION
Cl
VEXZGXHMUGYJMC-UHFFFAOYSA-M
 Ligand Interaction
EDO
Query on EDO

Download SDF File 
Download CCD File 
A
1,2-ETHANEDIOL
ETHYLENE GLYCOL
C2 H6 O2
LYCAIKOWRPUZTN-UHFFFAOYSA-N
 Ligand Interaction
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.87 Å
  • R-Value Free: 0.217 
  • R-Value Work: 0.182 
  • Space Group: P 1
Unit Cell:
Length (Å)Angle (°)
a = 43.690α = 99.04
b = 68.970β = 100.09
c = 84.300γ = 96.95
Software Package:
Software NamePurpose
PHENIXrefinement
PHASERphasing
SCALAdata scaling
MOSFLMdata reduction

Structure Validation

View Full Validation Report or Ramachandran Plots



Entry History 

Deposition Data

Revision History 

  • Version 1.0: 2013-03-06
    Type: Initial release
  • Version 1.1: 2013-03-20
    Type: Database references