3VV2

Crystal structure of complex form between S324A-subtilisin and mutant Tkpro


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.83 Å
  • R-Value Free: 0.268 
  • R-Value Work: 0.218 
  • R-Value Observed: 0.221 

wwPDB Validation   3D Report Full Report


This is version 1.1 of the entry. See complete history


Literature

Accelerated maturation of Tk-subtilisin by a Leu Pro mutation at the C-terminus of the propeptide, which reduces the binding of the propeptide to Tk-subtilisin

Uehara, R.Ueda, Y.You, D.J.Koga, Y.Kanaya, S.

(2013) FEBS J 280: 994-1006

  • DOI: https://doi.org/10.1111/febs.12091
  • Primary Citation of Related Structures:  
    3VV2

  • PubMed Abstract: 

    Tk-subtilisin, a subtilisin homologue (Gly70-Gly398) from Thermococcus kodakarensis, is matured from its precursor, Pro-Tk-subtilisin [Tk-subtilisin in a pro form (Gly1-Gly398)], by autoprocessing and degradation of propeptide [Tk-propeptide, a propeptide of Tk-subtilisin (Gly1-Leu69)]. The scissile peptide bond between Leu69 and Gly70 of Pro-Tk-subtilisin is first self-cleaved to produce an inactive Tk-propeptide:Tk-subtilisin complex, in which the C-terminal region of Tk-propeptide binds to the active-site cleft of Tk-subtilisin. Tk-propeptide is then dissociated from Tk-subtilisin and degraded by Tk-subtilisin to release active Tk-subtilisin. To examine whether the mutation of Leu69 to Pro, which is the most unfavourable residue in the P1 position for subtilisins, affects the maturation of Pro-Tk-subtilisin, the Pro-Tk-subtilisin and Tk-propeptide derivatives with this mutation (Pro-L69P and L69P-propeptide) were constructed and characterized. Pro-L69P was autoprocessed more slowly than Pro-Tk-subtilisin. Nevertheless, it matured to Tk-subtilisin more rapidly than Pro-Tk-subtilisin because L69P-propeptide was degraded by Tk-subtilisin more rapidly than Tk-propeptide. The chaperone function and stability of L69P-propeptide were comparable to those of Tk-propeptide, whereas the inhibitory potency and binding ability of L69P-propeptide were considerably reduced compared to those of Tk-propeptide. The crystal structure of the complex between L69P-propeptide and S324A-subtilisin (i.e. a protease activity-defective mutant) revealed that the C-terminal region of L69P-propeptide does not well fit into the substrate binding pockets of Tk-subtilisin (S1-S4 subsites) as a result of a conformational change caused by the mutation. These results suggest that the Leu→Pro mutation accelerates the maturation of Pro-Tk-subtilisin by reducing the binding ability of Tk-propeptide to Tk-subtilisin.


  • Organizational Affiliation

    Department of Material and Life Science, Graduate School of Engineering, Osaka University, Suita, Osaka, Japan.


Macromolecules
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 1
MoleculeChains Sequence LengthOrganismDetailsImage
Tk-subtilisin329Thermococcus kodakarensis KOD1Mutation(s): 1 
Gene Names: TK1675
EC: 3.4.21
UniProt
Find proteins for P58502 (Thermococcus kodakarensis (strain ATCC BAA-918 / JCM 12380 / KOD1))
Explore P58502 
Go to UniProtKB:  P58502
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
UniProt GroupP58502
Sequence Annotations
Expand
  • Reference Sequence
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 2
MoleculeChains Sequence LengthOrganismDetailsImage
PROPEPTIDE from Tk-subtilisin69Thermococcus kodakarensis KOD1Mutation(s): 1 
Gene Names: TK1675
UniProt
Find proteins for P58502 (Thermococcus kodakarensis (strain ATCC BAA-918 / JCM 12380 / KOD1))
Explore P58502 
Go to UniProtKB:  P58502
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
UniProt GroupP58502
Sequence Annotations
Expand
  • Reference Sequence
Small Molecules
Ligands 3 Unique
IDChains Name / Formula / InChI Key2D Diagram3D Interactions
ZN
Query on ZN

Download Ideal Coordinates CCD File 
K [auth B]ZINC ION
Zn
PTFCDOFLOPIGGS-UHFFFAOYSA-N
CA
Query on CA

Download Ideal Coordinates CCD File 
C [auth A]
D [auth A]
E [auth A]
F [auth A]
G [auth A]
C [auth A],
D [auth A],
E [auth A],
F [auth A],
G [auth A],
H [auth A],
I [auth A]
CALCIUM ION
Ca
BHPQYMZQTOCNFJ-UHFFFAOYSA-N
CL
Query on CL

Download Ideal Coordinates CCD File 
J [auth A]CHLORIDE ION
Cl
VEXZGXHMUGYJMC-UHFFFAOYSA-M
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.83 Å
  • R-Value Free: 0.268 
  • R-Value Work: 0.218 
  • R-Value Observed: 0.221 
  • Space Group: P 21 21 21
Unit Cell:
Length ( Å )Angle ( ˚ )
a = 65.051α = 90
b = 68.583β = 90
c = 74.054γ = 90
Software Package:
Software NamePurpose
BL44data collection
MOLREPphasing
REFMACrefinement
HKL-2000data reduction
HKL-2000data scaling

Structure Validation

View Full Validation Report



Entry History 

Deposition Data

Revision History  (Full details and data files)

  • Version 1.0: 2013-03-06
    Type: Initial release
  • Version 1.1: 2023-11-08
    Changes: Data collection, Database references, Derived calculations, Refinement description