3VU1

Crystal structure of the C-terminal globular domain of oligosaccharyltransferase (PhAglB-L, O74088_PYRHO) from Pyrococcus horikoshii


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.7 Å
  • R-Value Free: 0.215 
  • R-Value Work: 0.171 

wwPDB Validation 3D Report Full Report


This is version 1.0 of the entry. See complete history

Literature

Crystallographic and NMR Evidence for Flexibility in Oligosaccharyltransferases and Its Catalytic Significance

Nyirenda, J.Matsumoto, S.Saitoh, T.Maita, N.Noda, N.N.Inagaki, F.Kohda, D.

(2013) Structure 21: 32-41

  • DOI: 10.1016/j.str.2012.10.011
  • Primary Citation of Related Structures:  3VU0

  • PubMed Abstract: 
  • Oligosaccharyltransferase (OST) is a membrane-bound enzyme that catalyzes the transfer of an oligosaccharide to an asparagine residue in glycoproteins. It possesses a binding pocket that recognizes Ser and Thr residues at the +2 position in the N-gly ...

    Oligosaccharyltransferase (OST) is a membrane-bound enzyme that catalyzes the transfer of an oligosaccharide to an asparagine residue in glycoproteins. It possesses a binding pocket that recognizes Ser and Thr residues at the +2 position in the N-glycosylation consensus, Asn-X-Ser/Thr. We determined the crystal structures of the C-terminal globular domains of the catalytic subunits of two archaeal OSTs. A comparison with previously determined structures identified a segment with remarkable conformational plasticity, induced by crystal contact effects. We characterized its dynamic properties in solution by (15)N NMR relaxation analyses. Intriguingly, the mobile region contains the +2 Ser/Thr-binding pocket. In agreement, the flexibility restriction forced by an engineered disulfide crosslink abolished the enzymatic activity, and its cleavage fully restored activity. These results suggest the necessity of multiple conformational states in the reaction. The dynamic nature of the Ser/Thr pocket could facilitate the efficient scanning of N-glycosylation sequons along nascent polypeptide chains.


    Organizational Affiliation

    Division of Structural Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan.




Macromolecules

Find similar proteins by: Sequence  |  Structure

Entity ID: 1
MoleculeChainsSequence LengthOrganismDetails
Putative uncharacterized protein PH0242
A, B
506Pyrococcus horikoshii (strain ATCC 700860 / DSM 12428 / JCM 9974 / NBRC 100139 / OT-3)N/A
Find proteins for O74088 (Pyrococcus horikoshii (strain ATCC 700860 / DSM 12428 / JCM 9974 / NBRC 100139 / OT-3))
Go to UniProtKB:  O74088
Small Molecules
Ligands 2 Unique
IDChainsName / Formula / InChI Key2D Diagram3D Interactions
CL
Query on CL

Download SDF File 
Download CCD File 
A, B
CHLORIDE ION
Cl
VEXZGXHMUGYJMC-UHFFFAOYSA-M
 Ligand Interaction
CA
Query on CA

Download SDF File 
Download CCD File 
A, B
CALCIUM ION
Ca
BHPQYMZQTOCNFJ-UHFFFAOYSA-N
 Ligand Interaction
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.7 Å
  • R-Value Free: 0.215 
  • R-Value Work: 0.171 
  • Space Group: P 21 21 21
Unit Cell:
Length (Å)Angle (°)
a = 83.467α = 90.00
b = 94.844β = 90.00
c = 186.345γ = 90.00
Software Package:
Software NamePurpose
HKL-2000data reduction
HKL-2000data collection
MOLREPphasing
HKL-2000data scaling
REFMACrefinement

Structure Validation

View Full Validation Report or Ramachandran Plots



Entry History 

Deposition Data

Revision History 

  • Version 1.0: 2013-01-23
    Type: Initial release