3SSG

Structure of transthyretin L55P in complex with Zn


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.00 Å
  • R-Value Free: 0.247 
  • R-Value Work: 0.203 
  • R-Value Observed: 0.205 

wwPDB Validation 3D Report Full Report


This is version 1.1 of the entry. See complete history


Literature

Structural insights into a zinc-dependent pathway leading to Leu55Pro transthyretin amyloid fibrils.

Castro-Rodrigues, A.F.Gales, L.Saraiva, M.J.Damas, A.M.

(2011) Acta Crystallogr D Biol Crystallogr 67: 1035-1044

  • DOI: 10.1107/S090744491104491X
  • Primary Citation of Related Structures:  
    3SSG

  • PubMed Abstract: 
  • Human transthyretin (TTR) is a homotetrameric protein that is responsible for the formation of amyloid in patients with familiar amyloidotic polyneuropathy (FAP), familiar amyloidotic cardiomyopathy (FAC) and senile systemic amyloidosis (SSA). Amyloid fibrils are characterized by a cross-β structure ...

    Human transthyretin (TTR) is a homotetrameric protein that is responsible for the formation of amyloid in patients with familiar amyloidotic polyneuropathy (FAP), familiar amyloidotic cardiomyopathy (FAC) and senile systemic amyloidosis (SSA). Amyloid fibrils are characterized by a cross-β structure. However, details of how TTR monomers are organized to form such an assembly remain unknown. The effect of Zn(2+) in increasing TTR L55P amyloidogenecity has been reported. Crystals of the TTR L55P-Zn(2+) complex were grown under conditions similar to those leading to higher amyloidogenic potential of the variant protein and the three-dimensional structure of the complex was determined by X-ray crystallography. Two different tetrahedral Zn(2+)-binding sites were identified: one cross-links two tetramers, while the other lies at the interface between two monomers in a dimer. The association of monomers involving the two Zn(2+)-binding sites leads to a bidimensional array with a cross-β structure. The formation of this structure and subsequent organization into amyloid fibrils was monitored by fluorescence spectroscopy and electron microscopy. The TTR L55P-Zn(2+) structure offers the first molecular insights into the role of Zn(2+) as a mediator of cross-β-type structure in TTR amyloidosis and the relevance of a Zn(2+)-dependent pathway leading to the production of early amyloidogenic intermediates is discussed.


    Organizational Affiliation

    IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal.



Macromolecules
Find similar proteins by:  (by identity cutoff)  |  Structure
Entity ID: 1
MoleculeChainsSequence LengthOrganismDetailsImage
TransthyretinA127Homo sapiensMutation(s): 1 
Gene Names: TTRPALB
Find proteins for P02766 (Homo sapiens)
Explore P02766 
Go to UniProtKB:  P02766
NIH Common Fund Data Resources
PHAROS  P02766
Protein Feature View
Expand
 ( Mouse scroll to zoom / Hold left click to move )
  • Reference Sequence
Small Molecules
Ligands 2 Unique
IDChainsName / Formula / InChI Key2D Diagram3D Interactions
CAC
Query on CAC

Download CCD File 
A
CACODYLATE ION
C2 H6 As O2
OGGXGZAMXPVRFZ-UHFFFAOYSA-M
 Ligand Interaction
ZN
Query on ZN

Download CCD File 
A
ZINC ION
Zn
PTFCDOFLOPIGGS-UHFFFAOYSA-N
 Ligand Interaction
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.00 Å
  • R-Value Free: 0.247 
  • R-Value Work: 0.203 
  • R-Value Observed: 0.205 
  • Space Group: P 42 21 2
Unit Cell:
Length ( Å )Angle ( ˚ )
a = 54.615α = 90
b = 54.615β = 90
c = 86.564γ = 90
Software Package:
Software NamePurpose
DNAdata collection
PHASESphasing
REFMACrefinement
MOSFLMdata reduction
SCALAdata scaling

Structure Validation

View Full Validation Report



Entry History 

Deposition Data

Revision History 

  • Version 1.0: 2011-11-30
    Type: Initial release
  • Version 1.1: 2011-12-14
    Changes: Database references