3PYP

PHOTOACTIVE YELLOW PROTEIN, CRYOTRAPPED EARLY LIGHT CYCLE INTERMEDIATE


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 0.85 Å
  • R-Value Free: 0.155 
  • R-Value Observed: 0.133 

wwPDB Validation   3D Report Full Report


Ligand Structure Quality Assessment 


This is version 1.4 of the entry. See complete history


Literature

Structure at 0.85 A resolution of an early protein photocycle intermediate.

Genick, U.K.Soltis, S.M.Kuhn, P.Canestrelli, I.L.Getzoff, E.D.

(1998) Nature 392: 206-209

  • DOI: https://doi.org/10.1038/32462
  • Primary Citation of Related Structures:  
    3PYP

  • PubMed Abstract: 

    Protein photosensors from all kingdoms of life use bound organic molecules, known as chromophores, to detect light. A specific double bond within each chromophore is isomerized by light, triggering slower changes in the protein as a whole. The initial movements of the chromophore, which can occur in femtoseconds, are tightly constrained by the surrounding protein, making it difficult to see how isomerization can occur, be recognized, and be appropriately converted into a protein-wide structural change and biological signal. Here we report how this dilemma is resolved in the photoactive yellow protein (PYP). We trapped a key early intermediate in the light cycle of PYP at temperatures below -100 degrees C, and determined its structure at better than 1 A resolution. The 4-hydroxycinnamoyl chromophore isomerizes by flipping its thioester linkage with the protein, thus avoiding collisions resulting from large-scale movement of its aromatic ring during the initial light reaction. A protein-to-chromophore hydrogen bond that is present in both the preceding dark state and the subsequent signalling state of the photosensor breaks, forcing one of the hydrogen-bonding partners into a hydrophobic pocket. The isomerized bond is distorted into a conformation resembling that in the transition state. The resultant stored energy is used to drive the PYP light cycle. These results suggest a model for phototransduction, with implications for bacteriorhodopsin, photoactive proteins, PAS domains, and signalling proteins.


  • Organizational Affiliation

    Department of Molecular Biology, The Scripps Research Institute, La Jolla, California 92037, USA.


Macromolecules
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 1
MoleculeChains Sequence LengthOrganismDetailsImage
PHOTOACTIVE YELLOW PROTEIN125Halorhodospira halophilaMutation(s): 0 
UniProt
Find proteins for P16113 (Halorhodospira halophila)
Explore P16113 
Go to UniProtKB:  P16113
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
UniProt GroupP16113
Sequence Annotations
Expand
  • Reference Sequence
Small Molecules
Ligands 1 Unique
IDChains Name / Formula / InChI Key2D Diagram3D Interactions
HC4
Query on HC4

Download Ideal Coordinates CCD File 
B [auth A]4'-HYDROXYCINNAMIC ACID
C9 H8 O3
NGSWKAQJJWESNS-ZZXKWVIFSA-N
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 0.85 Å
  • R-Value Free: 0.155 
  • R-Value Observed: 0.133 
  • Space Group: P 63
Unit Cell:
Length ( Å )Angle ( ˚ )
a = 66.224α = 90
b = 66.224β = 90
c = 40.561γ = 120
Software Package:
Software NamePurpose
SHELX-97refinement
DENZOdata reduction
SCALEPACKdata scaling

Structure Validation

View Full Validation Report



Ligand Structure Quality Assessment 


Entry History 

Deposition Data

Revision History  (Full details and data files)

  • Version 1.0: 1999-06-01
    Type: Initial release
  • Version 1.1: 2008-03-25
    Changes: Version format compliance
  • Version 1.2: 2011-07-13
    Changes: Version format compliance
  • Version 1.3: 2017-11-29
    Changes: Derived calculations, Other
  • Version 1.4: 2023-08-09
    Changes: Database references, Derived calculations, Refinement description