3K53

Crystal Structure of NFeoB from P. furiosus


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.7 Å
  • R-Value Free: 0.286 
  • R-Value Work: 0.230 

wwPDB Validation 3D Report Full Report


This is version 1.2 of the entry. See complete history

Literature

Structural fold, conservation and Fe(II) binding of the intracellular domain of prokaryote FeoB.

Hung, K.W.Chang, Y.W.Eng, E.T.Chen, J.H.Chen, Y.C.Sun, Y.J.Hsiao, C.D.Dong, G.Spasov, K.A.Unger, V.M.Huang, T.H.

(2010) J.Struct.Biol. 170: 501-512

  • DOI: 10.1016/j.jsb.2010.01.017
  • Primary Citation of Related Structures:  2WIA, 2WIB, 2WIC

  • PubMed Abstract: 
  • FeoB is a G-protein coupled membrane protein essential for Fe(II) uptake in prokaryotes. Here, we report the crystal structures of the intracellular domain of FeoB (NFeoB) from Klebsiella pneumoniae (KpNFeoB) and Pyrococcus furiosus (PfNFeoB) with an ...

    FeoB is a G-protein coupled membrane protein essential for Fe(II) uptake in prokaryotes. Here, we report the crystal structures of the intracellular domain of FeoB (NFeoB) from Klebsiella pneumoniae (KpNFeoB) and Pyrococcus furiosus (PfNFeoB) with and without bound ligands. In the structures, a canonical G-protein domain (G domain) is followed by a helical bundle domain (S-domain), which despite its lack of sequence similarity between species is structurally conserved. In the nucleotide-free state, the G-domain's two switch regions point away from the binding site. This gives rise to an open binding pocket whose shallowness is likely to be responsible for the low nucleotide-binding affinity. Nucleotide binding induced significant conformational changes in the G5 motif which in the case of GMPPNP binding was accompanied by destabilization of the switch I region. In addition to the structural data, we demonstrate that Fe(II)-induced foot printing cleaves the protein close to a putative Fe(II)-binding site at the tip of switch I, and we identify functionally important regions within the S-domain. Moreover, we show that NFeoB exists as a monomer in solution, and that its two constituent domains can undergo large conformational changes. The data show that the S-domain plays important roles in FeoB function.


    Organizational Affiliation

    Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan, ROC.




Macromolecules

Find similar proteins by: Sequence  |  Structure

Entity ID: 1
MoleculeChainsSequence LengthOrganismDetails
Ferrous iron transport protein b
A, B, C, D
271Pyrococcus furiosus (strain ATCC 43587 / DSM 3638 / JCM 8422 / Vc1)N/A
Find proteins for Q8U2H8 (Pyrococcus furiosus (strain ATCC 43587 / DSM 3638 / JCM 8422 / Vc1))
Go to UniProtKB:  Q8U2H8
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.7 Å
  • R-Value Free: 0.286 
  • R-Value Work: 0.230 
  • Space Group: P 21 21 21
Unit Cell:
Length (Å)Angle (°)
a = 55.256α = 90.00
b = 106.108β = 90.00
c = 253.892γ = 90.00
Software Package:
Software NamePurpose
HKL-2000data reduction
SCALEPACKdata scaling
CNSphasing
CNSrefinement
DENZOdata reduction
PDB_EXTRACTdata extraction

Structure Validation

View Full Validation Report or Ramachandran Plots



Entry History 

Deposition Data

Revision History 

  • Version 1.0: 2010-05-26
    Type: Initial release
  • Version 1.1: 2011-07-13
    Type: Version format compliance
  • Version 1.2: 2017-11-01
    Type: Refinement description