3JW2

HIV-1 Protease Mutant G86S with DARUNAVIR


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.8 Å
  • R-Value Free: 0.282 
  • R-Value Work: 0.196 

wwPDB Validation 3D Report Full Report


This is version 1.3 of the entry. See complete history

Literature

Highly conserved glycine 86 and arginine 87 residues contribute differently to the structure and activity of the mature HIV-1 protease

Ishima, R.Gong, Q.Tie, Y.Weber, I.T.Louis, J.M.

(2009) Proteins 78: 1015-1025

  • DOI: 10.1002/prot.22625
  • Primary Citation of Related Structures:  

  • PubMed Abstract: 
  • The structural and functional role of conserved residue G86 in HIV-1 protease (PR) was investigated by NMR and crystallographic analyses of substitution mutations of glycine to alanine and serine (PR(G86A) and PR(G86S)). While PR(G86S) had undetectab ...

    The structural and functional role of conserved residue G86 in HIV-1 protease (PR) was investigated by NMR and crystallographic analyses of substitution mutations of glycine to alanine and serine (PR(G86A) and PR(G86S)). While PR(G86S) had undetectable catalytic activity, PR(G86A) exhibited approximately 6000-fold lower catalytic activity than PR. (1)H-(15)N NMR correlation spectra revealed that PR(G86A) and PR(G86S) are dimeric, exhibiting dimer dissociation constants (K(d)) of approximately 0.5 and approximately 3.2 muM, respectively, which are significantly lower than that seen for PR with R87K mutation (K(d) > 1 mM). Thus, the G86 mutants, despite being partially dimeric under the assay conditions, are defective in catalyzing substrate hydrolysis. NMR spectra revealed no changes in the chemical shifts even in the presence of excess substrate, indicating very poor binding of the substrate. Both NMR chemical shift data and crystal structures of PR(G86A) and PR(G86S) in the presence of active-site inhibitors indicated high structural similarity to previously described PR/inhibitor complexes, except for specific perturbations within the active site loop and around the mutation site. The crystal structures in the presence of the inhibitor showed that the region around residue 86 was connected to the active site by a conserved network of hydrogen bonds, and the two regions moved further apart in the mutants. Overall, in contrast to the role of R87 in contributing significantly to the dimer stability of PR, G86 is likely to play an important role in maintaining the correct geometry of the active site loop in the PR dimer for substrate binding and hydrolysis. Proteins 2010. (c) 2009 Wiley-Liss, Inc.


    Organizational Affiliation

    Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15260, USA. ishima@pitt.edu




Macromolecules

Find similar proteins by: Sequence  |  Structure

Entity ID: 1
MoleculeChainsSequence LengthOrganismDetails
Gag-Pol polyprotein
A, B
99Human immunodeficiency virus type 1 group M subtype BMutation(s): 6 
Gene Names: gag-pol
Find proteins for P03367 (Human immunodeficiency virus type 1 group M subtype B)
Go to UniProtKB:  P03367
Small Molecules
Ligands 3 Unique
IDChainsName / Formula / InChI Key2D Diagram3D Interactions
NA
Query on NA

Download SDF File 
Download CCD File 
A
SODIUM ION
Na
FKNQFGJONOIPTF-UHFFFAOYSA-N
 Ligand Interaction
CL
Query on CL

Download SDF File 
Download CCD File 
B
CHLORIDE ION
Cl
VEXZGXHMUGYJMC-UHFFFAOYSA-M
 Ligand Interaction
017
Query on 017

Download SDF File 
Download CCD File 
A
(3R,3AS,6AR)-HEXAHYDROFURO[2,3-B]FURAN-3-YL(1S,2R)-3-[[(4-AMINOPHENYL)SULFONYL](ISOBUTYL)AMINO]-1-BENZYL-2-HYDROXYPROPYLCARBAMATE
Darunavir, TMC114, UIC-94017
C27 H37 N3 O7 S
CJBJHOAVZSMMDJ-HEXNFIEUSA-N
 Ligand Interaction
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.8 Å
  • R-Value Free: 0.282 
  • R-Value Work: 0.196 
  • Space Group: P 21 21 2
Unit Cell:
Length (Å)Angle (°)
a = 58.355α = 90.00
b = 86.145β = 90.00
c = 46.369γ = 90.00
Software Package:
Software NamePurpose
MAR345data collection
HKL-2000data reduction
AMoREphasing
SHELXL-97refinement
HKL-2000data scaling

Structure Validation

View Full Validation Report or Ramachandran Plots



Entry History 

Deposition Data

  • Deposited Date: 2009-09-17 
  • Released Date: 2009-12-08 
  • Deposition Author(s): Tie, Y., Weber, I.T.

Revision History 

  • Version 1.0: 2009-12-08
    Type: Initial release
  • Version 1.1: 2011-07-13
    Type: Non-polymer description, Version format compliance
  • Version 1.2: 2017-08-23
    Type: Data collection
  • Version 1.3: 2017-11-01
    Type: Refinement description