3JC1

Electron cryo-microscopy of the IST1-CHMP1B ESCRT-III copolymer


Experimental Data Snapshot

  • Method: ELECTRON MICROSCOPY
  • Resolution: 4 Å
  • Aggregation State: FILAMENT 
  • Reconstruction Method: HELICAL 

wwPDB Validation 3D Report Full Report


This is version 1.2 of the entry. See complete history

Literature

Structure and membrane remodeling activity of ESCRT-III helical polymers.

McCullough, J.Clippinger, A.K.Talledge, N.Skowyra, M.L.Saunders, M.G.Naismith, T.V.Colf, L.A.Afonine, P.Arthur, C.Sundquist, W.I.Hanson, P.I.Frost, A.

(2015) Science 350: 1548-1551

  • DOI: 10.1126/science.aad8305

  • PubMed Abstract: 
  • The endosomal sorting complexes required for transport (ESCRT) proteins mediate fundamental membrane remodeling events that require stabilizing negative membrane curvature. These include endosomal intralumenal vesicle formation, HIV budding, nuclear ...

    The endosomal sorting complexes required for transport (ESCRT) proteins mediate fundamental membrane remodeling events that require stabilizing negative membrane curvature. These include endosomal intralumenal vesicle formation, HIV budding, nuclear envelope closure, and cytokinetic abscission. ESCRT-III subunits perform key roles in these processes by changing conformation and polymerizing into membrane-remodeling filaments. Here, we report the 4 angstrom resolution cryogenic electron microscopy reconstruction of a one-start, double-stranded helical copolymer composed of two different human ESCRT-III subunits, charged multivesicular body protein 1B (CHMP1B) and increased sodium tolerance 1 (IST1). The inner strand comprises "open" CHMP1B subunits that interlock in an elaborate domain-swapped architecture and is encircled by an outer strand of "closed" IST1 subunits. Unlike other ESCRT-III proteins, CHMP1B and IST1 polymers form external coats on positively curved membranes in vitro and in vivo. Our analysis suggests how common ESCRT-III filament architectures could stabilize different degrees and directions of membrane curvature.


    Organizational Affiliation

    Department of Biochemistry, University of Utah, Salt Lake City, UT 84112, USA.




Macromolecules

Find similar proteins by: Sequence  |  Structure

Entity ID: 1
MoleculeChainsSequence LengthOrganismDetails
Increased Sodium Tolerance 1 (IST1)
Aa, Ac, Ae, Ag, Ai, Ak, Am, Ao, Aq, As, Au, Aw, Ay, Ba, Bc, Be, Bg, Bi, Bk, Bm, Bo, Bq, Bs, Bu, Bw, By, Ca, Cc, Ce, Cg, Ci, Ck, Cm, Co
182Homo sapiensMutation(s): 0 
Gene Names: IST1 (KIAA0174)
Find proteins for P53990 (Homo sapiens)
Go to Gene View: IST1
Go to UniProtKB:  P53990
Entity ID: 2
MoleculeChainsSequence LengthOrganismDetails
Charged multivesicular body protein 1b
Ab, Ad, Af, Ah, Aj, Al, An, Ap, Ar, At, Av, Ax, Az, Bb, Bd, Bf, Bh, Bj, Bl, Bn, Bp, Br, Bt, Bv, Bx, Bz, Cb, Cd, Cf, Ch, Cj, Cl, Cn, Cp
160Homo sapiensMutation(s): 0 
Gene Names: CHMP1B (C18orf2)
Find proteins for Q7LBR1 (Homo sapiens)
Go to Gene View: CHMP1B
Go to UniProtKB:  Q7LBR1
Experimental Data & Validation

Experimental Data

  • Method: ELECTRON MICROSCOPY
  • Resolution: 4 Å
  • Aggregation State: FILAMENT 
  • Reconstruction Method: HELICAL 

Structure Validation

View Full Validation Report or Ramachandran Plots



Entry History 

Deposition Data

Revision History 

  • Version 1.0: 2015-12-16
    Type: Initial release
  • Version 1.1: 2015-12-30
    Type: Database references
  • Version 1.2: 2018-07-18
    Type: Author supporting evidence, Data collection