3GMX

Crystal Structure of Beta-Lactamse Inhibitory Protein-Like Protein (BLP) at 1.05 Angstrom Resolution


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.05 Å
  • R-Value Free: 0.154 
  • R-Value Work: 0.125 

wwPDB Validation 3D Report Full Report


This is version 1.2 of the entry. See complete history

Literature

Insights into positive and negative requirements for protein-protein interactions by crystallographic analysis of the beta-lactamase inhibitory proteins BLIP, BLIP-I, and BLP.

Gretes, M.Lim, D.C.de Castro, L.Jensen, S.E.Kang, S.G.Lee, K.J.Strynadka, N.C.

(2009) J.Mol.Biol. 389: 289-305

  • DOI: 10.1016/j.jmb.2009.03.058
  • Primary Citation of Related Structures:  

  • PubMed Abstract: 
  • Beta-lactamase inhibitory protein (BLIP) binds a variety of beta-lactamase enzymes with wide-ranging specificity. Its binding mechanism and interface interactions are a well-established model system for the characterization of protein-protein interac ...

    Beta-lactamase inhibitory protein (BLIP) binds a variety of beta-lactamase enzymes with wide-ranging specificity. Its binding mechanism and interface interactions are a well-established model system for the characterization of protein-protein interactions. Published studies have examined the binding of BLIP to diverse target beta-lactamases (e.g., TEM-1, SME-1, and SHV-1). However, apart from point mutations of amino acid residues, variability on the inhibitor side of this enzyme-inhibitor interface has remained unexplored. Thus, we present crystal structures of two likely BLIP relatives: (1) BLIP-I (solved alone and in complex with TEM-1), which has beta-lactamase inhibitory activity very similar to that of BLIP; and (2) beta-lactamase-inhibitory-protein-like protein (BLP) (in two apo forms, including an ultra-high-resolution structure), which is unable to inhibit any tested beta-lactamase. Despite categorical differences in species of origin and function, BLIP-I and BLP share nearly identical backbone conformations, even at loop regions differing in BLIP. We describe interacting residues and provide a comparative structural analysis of the interactions formed at the interface of BLIP-I.TEM-1 versus those formed at the interface of BLIP.TEM-1. Along with initial attempts to functionally characterize BLP, we examine its amino acid residues that structurally correspond to BLIP/BLIP-I binding hotspots to explain its inability to bind and inhibit TEM-1. We conclude that the BLIP family fold is a robust and flexible scaffold that permits the formation of high-affinity protein-protein interactions while remaining highly selective. Comparison of the two naturally occurring, distinct binding interfaces built upon this scaffold (BLIP and BLIP-I) shows that there is substantial variation possible in the subnanomolar binding interaction with TEM-1. The corresponding (non-TEM-1-binding) BLP surface shows that numerous favorable backbone-backbone/backbone-side-chain interactions with a protein partner can be negated by the presence of a few, strongly unfavorable interactions, especially electrostatic repulsions.


    Organizational Affiliation

    Department of Biochemistry and Molecular Biology, Center for Blood Research, University of British Columbia, Vancouver, British Columbia, Canada.




Macromolecules

Find similar proteins by: Sequence  |  Structure

Entity ID: 1
MoleculeChainsSequence LengthOrganismDetails
BLP
B, A
154Streptomyces clavuligerus (strain ATCC 27064 / DSM 738 / JCM 4710 / NBRC 13307 / NCIMB 12785 / NRRL 3585 / VKM Ac-602)Mutation(s): 0 
Gene Names: blp
Find proteins for B5GLC0 (Streptomyces clavuligerus (strain ATCC 27064 / DSM 738 / JCM 4710 / NBRC 13307 / NCIMB 12785 / NRRL 3585 / VKM Ac-602))
Go to UniProtKB:  B5GLC0
Small Molecules
Ligands 1 Unique
IDChainsName / Formula / InChI Key2D Diagram3D Interactions
ACT
Query on ACT

Download SDF File 
Download CCD File 
A, B
ACETATE ION
C2 H3 O2
QTBSBXVTEAMEQO-UHFFFAOYSA-M
 Ligand Interaction
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.05 Å
  • R-Value Free: 0.154 
  • R-Value Work: 0.125 
  • Space Group: P 1 21 1
Unit Cell:
Length (Å)Angle (°)
a = 35.771α = 90.00
b = 99.925β = 101.26
c = 41.643γ = 90.00
Software Package:
Software NamePurpose
SCALEPACKdata scaling
DENZOdata reduction
MOLREPphasing
REFMACrefinement
PDB_EXTRACTdata extraction
HKL-2000data collection
HKL-2000data reduction

Structure Validation

View Full Validation Report or Ramachandran Plots



Entry History 

Deposition Data

Revision History 

  • Version 1.0: 2009-03-31
    Type: Initial release
  • Version 1.1: 2011-07-13
    Type: Version format compliance
  • Version 1.2: 2017-11-01
    Type: Advisory, Refinement description