3G6V

DNA synthesis across an abasic lesion by human DNA polymerase-iota


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.2 Å
  • R-Value Free: 0.251 
  • R-Value Work: 0.211 

wwPDB Validation 3D Report Full Report


This is version 1.2 of the entry. See complete history

Literature

DNA Synthesis across an Abasic Lesion by Human DNA Polymerase iota

Nair, D.T.Johnson, R.E.Prakash, L.Prakash, S.Aggarwal, A.K.

(2009) Structure 17: 530-537

  • DOI: 10.1016/j.str.2009.02.015
  • Primary Citation of Related Structures:  

  • PubMed Abstract: 
  • Abasic sites are among the most abundant DNA lesions formed in human cells, and they present a strong block to replication. DNA polymerase iota (Poliota) is one of the few DNA Pols that does not follow the A-rule opposite an abasic site. We present h ...

    Abasic sites are among the most abundant DNA lesions formed in human cells, and they present a strong block to replication. DNA polymerase iota (Poliota) is one of the few DNA Pols that does not follow the A-rule opposite an abasic site. We present here three structures of human Poliota in complex with DNAs containing an abasic lesion and dGTP, dTTP, or dATP as the incoming nucleotide. The structures reveal a mechanism of translesion synthesis across an abasic lesion that differs from that in other Pols. Both the abasic lesion and the incoming dNTPs are intrahelical and are closely apposed across a constricted active site cleft. The dNTPs partake in distinct networks of hydrogen bonds in the "void" opposite the lesion. These different patterns of hydrogen bonds, as well as stacking interactions, may underlie Poliota's small preference for insertion of dGTP over other nucleotides opposite this common lesion.


    Organizational Affiliation

    Department of Structural and Chemical Biology, Mount Sinai School of Medicine, New York, NY 10029, USA.




Macromolecules

Find similar proteins by: Sequence  |  Structure


Entity ID: 1
MoleculeChainsSequence LengthOrganismDetails
DNA polymerase iota
A
420Homo sapiensMutation(s): 0 
Gene Names: POLI (RAD30B)
EC: 2.7.7.7
Find proteins for Q9UNA4 (Homo sapiens)
Go to Gene View: POLI
Go to UniProtKB:  Q9UNA4
Entity ID: 2
MoleculeChainsLengthOrganism
Primer DNA strandP7N/A
Entity ID: 3
MoleculeChainsLengthOrganism
Template DNA strandT12N/A
Small Molecules
Ligands 2 Unique
IDChainsName / Formula / InChI Key2D Diagram3D Interactions
ATP
Query on ATP

Download SDF File 
Download CCD File 
A
ADENOSINE-5'-TRIPHOSPHATE
C10 H16 N5 O13 P3
ZKHQWZAMYRWXGA-KQYNXXCUSA-N
 Ligand Interaction
MG
Query on MG

Download SDF File 
Download CCD File 
A
MAGNESIUM ION
Mg
JLVVSXFLKOJNIY-UHFFFAOYSA-N
 Ligand Interaction
Modified Residues  2 Unique
IDChainsTypeFormula2D DiagramParent
3DR
Query on 3DR
T
DNA LINKINGC5 H11 O6 P

--

DOC
Query on DOC
P
DNA LINKINGC9 H14 N3 O6 PDC
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.2 Å
  • R-Value Free: 0.251 
  • R-Value Work: 0.211 
  • Space Group: P 65 2 2
Unit Cell:
Length (Å)Angle (°)
a = 98.150α = 90.00
b = 98.150β = 90.00
c = 203.315γ = 120.00
Software Package:
Software NamePurpose
HKL-2000data reduction
JDirectordata collection
CNSrefinement
AMoREphasing
REFMACrefinement
HKL-2000data scaling

Structure Validation

View Full Validation Report or Ramachandran Plots



Entry History 

Deposition Data

Revision History 

  • Version 1.0: 2009-05-12
    Type: Initial release
  • Version 1.1: 2011-07-13
    Type: Advisory, Refinement description, Version format compliance
  • Version 1.2: 2017-11-01
    Type: Refinement description