3FIU

Structure of NMN synthetase from Francisella tularensis


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.85 Å
  • R-Value Free: 0.233 
  • R-Value Work: 0.184 

wwPDB Validation 3D Report Full Report


This is version 1.3 of the entry. See complete history

Literature

Nicotinamide mononucleotide synthetase is the key enzyme for an alternative route of NAD biosynthesis in Francisella tularensis

Sorci, L.Martynowski, D.Rodionov, D.A.Eyobo, Y.Zogaj, X.Klose, K.E.Nikolaev, E.V.Magni, G.Zhang, H.Osterman, A.L.

(2009) Proc.Natl.Acad.Sci.USA 106: 3083-3088

  • DOI: 10.1073/pnas.0811718106

  • PubMed Abstract: 
  • Enzymes involved in the last 2 steps of nicotinamide adenine dinucleotide (NAD) cofactor biosynthesis, which catalyze the adenylylation of the nicotinic acid mononucleotide (NaMN) precursor to nicotinic acid dinucleotide (NaAD) followed by its amidat ...

    Enzymes involved in the last 2 steps of nicotinamide adenine dinucleotide (NAD) cofactor biosynthesis, which catalyze the adenylylation of the nicotinic acid mononucleotide (NaMN) precursor to nicotinic acid dinucleotide (NaAD) followed by its amidation to NAD, constitute promising drug targets for the development of new antibiotics. These enzymes, NaMN adenylyltransferase (gene nadD) and NAD synthetase (gene nadE), respectively, are indispensable and conserved in nearly all bacterial pathogens. However, a comparative genome analysis of Francisella tularensis allowed us to predict the existence of an alternative route of NAD synthesis in this category A priority pathogen, the causative agent of tularaemia. In this route, the amidation of NaMN to nicotinamide mononucleotide (NMN) occurs before the adenylylation reaction, which converts this alternative intermediate to the NAD cofactor. The first step is catalyzed by NMN synthetase, which was identified and characterized in this study. A crystal structure of this enzyme, a divergent member of the NadE family, was solved at 1.9-A resolution in complex with reaction products, providing a rationale for its unusual substrate preference for NaMN over NaAD. The second step is performed by NMN adenylyltransferase of the NadM family. Here, we report validation of the predicted route (NaMN --> NMN --> NAD) in F. tularensis including mathematical modeling, in vitro reconstitution, and in vivo metabolite analysis in comparison with a canonical route (NaMN --> NaAD --> NAD) of NAD biosynthesis as represented by another deadly bacterial pathogen, Bacillus anthracis.


    Organizational Affiliation

    Burnham Institute for Medical Research, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA.




Macromolecules

Find similar proteins by: Sequence  |  Structure

Entity ID: 1
MoleculeChainsSequence LengthOrganismDetails
NH(3)-dependent NAD(+) synthetase
A, B, C, D
249N/AMutation(s): 0 
Protein Feature View is not available: No corresponding UniProt sequence found.
Small Molecules
Ligands 4 Unique
IDChainsName / Formula / InChI Key2D Diagram3D Interactions
POP
Query on POP

Download SDF File 
Download CCD File 
A, B, C, D
PYROPHOSPHATE 2-
H2 O7 P2
XPPKVPWEQAFLFU-UHFFFAOYSA-L
 Ligand Interaction
NA
Query on NA

Download SDF File 
Download CCD File 
A, B, C, D
SODIUM ION
Na
FKNQFGJONOIPTF-UHFFFAOYSA-N
 Ligand Interaction
MG
Query on MG

Download SDF File 
Download CCD File 
A, B, C, D
MAGNESIUM ION
Mg
JLVVSXFLKOJNIY-UHFFFAOYSA-N
 Ligand Interaction
AMP
Query on AMP

Download SDF File 
Download CCD File 
A, B, C, D
ADENOSINE MONOPHOSPHATE
C10 H14 N5 O7 P
UDMBCSSLTHHNCD-KQYNXXCUSA-N
 Ligand Interaction
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.85 Å
  • R-Value Free: 0.233 
  • R-Value Work: 0.184 
  • Space Group: P 21 21 21
Unit Cell:
Length (Å)Angle (°)
a = 50.432α = 90.00
b = 126.438β = 90.00
c = 152.531γ = 90.00
Software Package:
Software NamePurpose
HKL-2000data collection
HKL-2000data reduction
REFMACrefinement
HKL-2000data scaling
MOLREPphasing

Structure Validation

View Full Validation Report or Ramachandran Plots



Entry History 

Deposition Data

Revision History 

  • Version 1.0: 2009-03-03
    Type: Initial release
  • Version 1.1: 2011-07-13
    Type: Version format compliance
  • Version 1.2: 2014-11-12
    Type: Structure summary
  • Version 1.3: 2017-11-01
    Type: Refinement description