3DRU

Crystal Structure of Gly117Phe Alpha1-Antitrypsin


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 3.2 Å
  • R-Value Free: 0.290 
  • R-Value Work: 0.242 

wwPDB Validation 3D Report Full Report


This is version 1.1 of the entry. See complete history

Literature

Crystallographic and cellular characterisation of two mechanisms stabilising the native fold of alpha1-antitrypsin: implications for disease and drug design.

Gooptu, B.Miranda, E.Nobeli, I.Mallya, M.Purkiss, A.Brown, S.C.Summers, C.Phillips, R.L.Lomas, D.A.Barrett, T.E.

(2009) J.Mol.Biol. 387: 857-868

  • DOI: 10.1016/j.jmb.2009.01.069
  • Primary Citation of Related Structures:  

  • PubMed Abstract: 
  • The common Z mutant (Glu342Lys) of alpha(1)-antitrypsin results in the formation of polymers that are retained within hepatocytes. This causes liver disease whilst the plasma deficiency of an important proteinase inhibitor predisposes to emphysema. T ...

    The common Z mutant (Glu342Lys) of alpha(1)-antitrypsin results in the formation of polymers that are retained within hepatocytes. This causes liver disease whilst the plasma deficiency of an important proteinase inhibitor predisposes to emphysema. The Thr114Phe and Gly117Phe mutations border a surface cavity identified as a target for rational drug design. These mutations preserve inhibitory activity but reduce the polymerisation of wild-type native alpha(1)-antitrypsin in vitro and increase secretion in a Xenopus oocyte model of disease. To understand these effects, we have crystallised both mutants and solved their structures. The 2.2 A structure of Thr114Phe alpha(1)-antitrypsin demonstrates that the effects of the mutation are mediated entirely by well-defined partial cavity blockade and allows in silico screening of fragments capable of mimicking the effects of the mutation. The Gly117Phe mutation operates differently, repacking aromatic side chains in the helix F-beta-sheet A interface to induce a half-turn downward shift of the adjacent F helix. We have further characterised the effects of these two mutations in combination with the Z mutation in a eukaryotic cell model of disease. Both mutations increase the secretion of Z alpha(1)-antitrypsin in the native conformation, but the double mutants remain more polymerogenic than the wild-type (M) protein. Taken together, these data support different mechanisms by which the Thr114Phe and Gly117Phe mutations stabilise the native fold of alpha(1)-antitrypsin and increase secretion of monomeric protein in cell models of disease.


    Organizational Affiliation

    School of Crystallography, Birkbeck College, University of London, London, UK. b.gooptu@mail.cryst.bbk.ac.uk




Macromolecules

Find similar proteins by: Sequence  |  Structure

Entity ID: 1
MoleculeChainsSequence LengthOrganismDetails
Alpha-1-antitrypsin
A, B, C
404Homo sapiensMutation(s): 1 
Gene Names: SERPINA1 (AAT, PI)
Find proteins for P01009 (Homo sapiens)
Go to Gene View: SERPINA1
Go to UniProtKB:  P01009
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 3.2 Å
  • R-Value Free: 0.290 
  • R-Value Work: 0.242 
  • Space Group: P 1 21 1
Unit Cell:
Length (Å)Angle (°)
a = 58.840α = 90.00
b = 149.300β = 94.11
c = 77.290γ = 90.00
Software Package:
Software NamePurpose
MOSFLMdata reduction
SCALAdata scaling
PDB_EXTRACTdata extraction
CNSrefinement

Structure Validation

View Full Validation Report or Ramachandran Plots



Entry History 

Deposition Data

Revision History 

  • Version 1.0: 2009-03-31
    Type: Initial release
  • Version 1.1: 2011-07-13
    Type: Version format compliance