3CG3

Crystal structure of P. horikoshii periplasmic binding protein ModA/WtpA with bound tungstate


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.8 Å
  • R-Value Free: 0.228 
  • R-Value Work: 0.199 

wwPDB Validation 3D Report Full Report


This is version 1.1 of the entry. See complete history

Literature

Distorted octahedral coordination of tungstate in a subfamily of specific binding proteins.

Hollenstein, K.Comellas-Bigler, M.Bevers, L.E.Feiters, M.C.Meyer-Klaucke, W.Hagedoorn, P.L.Locher, K.P.

(2009) J.Biol.Inorg.Chem. 14: 663-672

  • DOI: 10.1007/s00775-009-0479-7
  • Primary Citation of Related Structures:  

  • PubMed Abstract: 
  • Bacteria and archaea import molybdenum and tungsten from the environment in the form of the oxyanions molybdate (MoO(4) (2-)) and tungstate (WO(4) (2-)). These substrates are captured by an external, high-affinity binding protein, and delivered to AT ...

    Bacteria and archaea import molybdenum and tungsten from the environment in the form of the oxyanions molybdate (MoO(4) (2-)) and tungstate (WO(4) (2-)). These substrates are captured by an external, high-affinity binding protein, and delivered to ATP binding cassette transporters, which move them across the cell membrane. We have recently reported a crystal structure of the molybdate/tungstate binding protein ModA/WtpA from Archaeoglobus fulgidus, which revealed an octahedrally coordinated central metal atom. By contrast, the previously determined structures of three bacterial homologs showed tetracoordinate molybdenum and tungsten atoms in their binding pockets. Until then, coordination numbers above four had only been found for molybdenum/tungsten in metalloenzymes where these metal atoms are part of the catalytic cofactors and coordinated by mostly non-oxygen ligands. We now report a high-resolution structure of A. fulgidus ModA/WtpA, as well as crystal structures of four additional homologs, all bound to tungstate. These crystal structures match X-ray absorption spectroscopy measurements from soluble, tungstate-bound protein, and reveal the details of the distorted octahedral coordination. Our results demonstrate that the distorted octahedral geometry is not an exclusive feature of the A. fulgidus protein, and suggest distinct binding modes of the binding proteins from archaea and bacteria.


    Organizational Affiliation

    Institute of Molecular Biology and Biophysics, ETH Zurich, Zurich, Switzerland.




Macromolecules

Find similar proteins by: Sequence  |  Structure

Entity ID: 1
MoleculeChainsSequence LengthOrganismDetails
UPF0100 protein PH0151
A
320Pyrococcus horikoshii (strain ATCC 700860 / DSM 12428 / JCM 9974 / NBRC 100139 / OT-3)Mutation(s): 0 
Gene Names: wtpA
Find proteins for O57890 (Pyrococcus horikoshii (strain ATCC 700860 / DSM 12428 / JCM 9974 / NBRC 100139 / OT-3))
Go to UniProtKB:  O57890
Small Molecules
Ligands 1 Unique
IDChainsName / Formula / InChI Key2D Diagram3D Interactions
WO4
Query on WO4

Download SDF File 
Download CCD File 
A
TUNGSTATE(VI)ION
O4 W
PBYZMCDFOULPGH-UHFFFAOYSA-N
 Ligand Interaction
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.8 Å
  • R-Value Free: 0.228 
  • R-Value Work: 0.199 
  • Space Group: P 21 21 21
Unit Cell:
Length (Å)Angle (°)
a = 36.954α = 90.00
b = 59.180β = 90.00
c = 150.758γ = 90.00
Software Package:
Software NamePurpose
CNSrefinement
SHELXSphasing
HKL-2000data reduction
SCALEPACKdata scaling
HKL-2000data collection

Structure Validation

View Full Validation Report or Ramachandran Plots



Entry History 

Deposition Data

Revision History 

  • Version 1.0: 2009-03-10
    Type: Initial release
  • Version 1.1: 2011-07-13
    Type: Version format compliance