3A1T

Crystal structue of the cytosolic domain of T. maritima FeoB iron iransporter in GDP form II


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.80 Å
  • R-Value Free: 0.240 
  • R-Value Work: 0.191 
  • R-Value Observed: 0.194 

wwPDB Validation 3D Report Full Report


This is version 1.1 of the entry. See complete history


Literature

Structural basis of novel interactions between the small-GTPase and GDI-like domains in prokaryotic FeoB iron transporter

Hattori, M.Jin, Y.Nishimasu, H.Tanaka, Y.Mochizuki, M.Uchiumi, T.Ishitani, R.Ito, K.Nureki, O.

(2009) Structure 17: 1345-1355

  • DOI: 10.1016/j.str.2009.08.007
  • Primary Citation of Related Structures:  
    3A1S, 3A1T, 3A1U, 3A1V, 3A1W

  • PubMed Abstract: 
  • The FeoB family proteins are widely distributed prokaryotic membrane proteins involved in Fe(2+) uptake. FeoB consists of N-terminal cytosolic and C-terminal transmembrane domains. The N-terminal region of the cytosolic domain is homologous to small ...

    The FeoB family proteins are widely distributed prokaryotic membrane proteins involved in Fe(2+) uptake. FeoB consists of N-terminal cytosolic and C-terminal transmembrane domains. The N-terminal region of the cytosolic domain is homologous to small GTPase (G) proteins and is considered to regulate Fe(2+) uptake. The spacer region connecting the G and TM domains reportedly functions as a GDP dissociation inhibitor (GDI)-like domain that stabilizes the GDP-binding state. However, the function of the G and GDI-like domains in iron uptake remains unclear. Here, we report the structural and functional analyses of the FeoB cytosolic domain from Thermotoga maritima. The structure-based mutational analysis indicated that the interaction between the G and GDI-like domains is important for both the GDI and Fe(2+) uptake activities. On the basis of these results, we propose a regulatory mechanism of Fe(2+) uptake.


    Organizational Affiliation

    Department of Basic Medical Sciences, Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo, Japan.



Macromolecules
Find similar proteins by:  (by identity cutoff)  |  Structure
Entity ID: 1
MoleculeChainsSequence LengthOrganismDetailsImage
Iron(II) transport protein BA258Thermotoga maritimaMutation(s): 0 
Gene Names: TM0051
Find proteins for Q9WXQ8 (Thermotoga maritima (strain ATCC 43589 / MSB8 / DSM 3109 / JCM 10099))
Explore Q9WXQ8 
Go to UniProtKB:  Q9WXQ8
Protein Feature View
Expand
 ( Mouse scroll to zoom / Hold left click to move )
  • Reference Sequence
Small Molecules
Ligands 1 Unique
IDChainsName / Formula / InChI Key2D Diagram3D Interactions
GDP
Query on GDP

Download CCD File 
A
GUANOSINE-5'-DIPHOSPHATE
C10 H15 N5 O11 P2
QGWNDRXFNXRZMB-UUOKFMHZSA-N
 Ligand Interaction
External Ligand Annotations 
IDBinding Affinity (Sequence Identity %)
GDPKd:  14800   nM  Binding MOAD
GDPKd :  14800   nM  PDBBind
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.80 Å
  • R-Value Free: 0.240 
  • R-Value Work: 0.191 
  • R-Value Observed: 0.194 
  • Space Group: P 31 2 1
Unit Cell:
Length ( Å )Angle ( ˚ )
a = 65.152α = 90
b = 65.152β = 90
c = 104.798γ = 120
Software Package:
Software NamePurpose
PHENIXrefinement

Structure Validation

View Full Validation Report



Entry History 

Deposition Data

Revision History 

  • Version 1.0: 2009-09-22
    Type: Initial release
  • Version 1.1: 2011-07-13
    Changes: Version format compliance