2QG2

HSP90 complexed with A917985

  • Classification: CHAPERONE
  • Mutation(s): No 

  • Deposited: 2007-06-28 Released: 2008-07-01 
  • Deposition Author(s): Park, C.H.

Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.80 Å
  • R-Value Free: 0.234 
  • R-Value Work: 0.203 
  • R-Value Observed: 0.217 

wwPDB Validation 3D Report Full Report


This is version 1.1 of the entry. See complete history


Literature

Discovery and design of novel HSP90 inhibitors using multiple fragment-based design strategies.

Huth, J.R.Park, C.Petros, A.M.Kunzer, A.R.Wendt, M.D.Wang, X.Lynch, C.L.Mack, J.C.Swift, K.M.Judge, R.A.Chen, J.Richardson, P.L.Jin, S.Tahir, S.K.Matayoshi, E.D.Dorwin, S.A.Ladror, U.S.Severin, J.M.Walter, K.A.Bartley, D.M.Fesik, S.W.Elmore, S.W.Hajduk, P.J.

(2007) Chem Biol Drug Des 70: 1-12

  • DOI: 10.1111/j.1747-0285.2007.00535.x
  • Primary Citation of Related Structures:  
    2QF6, 2QG2, 2QFO, 2QG0

  • PubMed Abstract: 
  • The molecular chaperone HSP90 has been shown to facilitate cancer cell survival by stabilizing key proteins responsible for a malignant phenotype. We report here the results of parallel fragment-based drug design approaches in the design of novel HSP ...

    The molecular chaperone HSP90 has been shown to facilitate cancer cell survival by stabilizing key proteins responsible for a malignant phenotype. We report here the results of parallel fragment-based drug design approaches in the design of novel HSP90 inhibitors. Initial aminopyrimidine leads were elaborated using high-throughput organic synthesis to yield nanomolar inhibitors of the enzyme. Second site leads were also identified which bound to HSP90 in two distinct conformations, an 'open' and 'closed' form. Intriguingly, linked fragment approaches targeting both of these conformations were successful in producing novel, micromolar inhibitors. Overall, this study shows that, with only a few fragment hits, multiple lead series can be generated for HSP90 due to the inherent flexibility of the active site. Thus, ample opportunities exist to use these lead series in the development of clinically useful HSP90 inhibitors for the treatment of cancers.


    Organizational Affiliation

    Global Pharmaceutical Research and Development, Abbott Laboratories, Abbott Park, IL 60064, USA.



Macromolecules
Find similar proteins by:  (by identity cutoff)  |  Structure
Entity ID: 1
MoleculeChainsSequence LengthOrganismDetailsImage
Heat shock protein HSP 90-alphaA207N/AMutation(s): 0 
Gene Names: HSP90AA1HSP90AHSPC1HSPCA
Find proteins for P07900 (Homo sapiens)
Explore P07900 
Go to UniProtKB:  P07900
NIH Common Fund Data Resources
PHAROS  P07900
Protein Feature View
Expand
 ( Mouse scroll to zoom / Hold left click to move )
  • Reference Sequence
Small Molecules
Ligands 1 Unique
IDChainsName / Formula / InChI Key2D Diagram3D Interactions
A91
Query on A91

Download CCD File 
A
3-({2-[(2-AMINO-6-METHYLPYRIMIDIN-4-YL)ETHYNYL]BENZYL}AMINO)-1,3-OXAZOL-2(3H)-ONE
C17 H15 N5 O2
ZUJWSOPIDUWELP-UHFFFAOYSA-N
 Ligand Interaction
External Ligand Annotations 
IDBinding Affinity (Sequence Identity %)
A91Ki :  4000   nM  PDBBind
A91Ki:  4000   nM  Binding MOAD
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.80 Å
  • R-Value Free: 0.234 
  • R-Value Work: 0.203 
  • R-Value Observed: 0.217 
  • Space Group: I 2 2 2
Unit Cell:
Length ( Å )Angle ( ˚ )
a = 66.792α = 90
b = 91.383β = 90
c = 98.339γ = 90
Software Package:
Software NamePurpose
CNXrefinement
HKL-2000data collection
HKL-2000data reduction
HKL-2000data scaling
CNSphasing

Structure Validation

View Full Validation Report



Entry History 

Deposition Data

  • Deposited Date: 2007-06-28 
  • Released Date: 2008-07-01 
  • Deposition Author(s): Park, C.H.

Revision History 

  • Version 1.0: 2008-07-01
    Type: Initial release
  • Version 1.1: 2011-07-13
    Changes: Version format compliance