2PZ8

NAD+ Synthetase from Bacillus anthracis with AMP-CPP and Mg2+


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 2 Å
  • R-Value Free: 0.229 
  • R-Value Work: 0.202 

wwPDB Validation 3D Report Full Report


This is version 1.1 of the entry. See complete history

Literature

Structural adaptation of an interacting non-native C-terminal helical extension revealed in the crystal structure of NAD(+) synthetase from Bacillus anthracis.

McDonald, H.M.Pruett, P.S.Deivanayagam, C.Protasevich, I.I.Carson, W.M.DeLucas, L.J.Brouillette, W.J.Brouillette, C.G.

(2007) Acta Crystallogr.,Sect.D 63: 891-905

  • DOI: 10.1107/S0907444907029769
  • Primary Citation of Related Structures:  

  • PubMed Abstract: 
  • The crystal structures of NH(3)-dependent NAD+ synthetase from Bacillus anthracis as the apoenzyme (1.9 A), in complex with the natural catalytic products AMP and pyrophosphate (2.4 A) and in complex with the substrate analog adenosine 5'-(alpha,beta ...

    The crystal structures of NH(3)-dependent NAD+ synthetase from Bacillus anthracis as the apoenzyme (1.9 A), in complex with the natural catalytic products AMP and pyrophosphate (2.4 A) and in complex with the substrate analog adenosine 5'-(alpha,beta-methylene)triphosphate (2.0 A) have been determined. NAD+ synthetase catalyzes the last step in the biosynthesis of the vitally important cofactor NAD+. In comparison to other NAD+ synthetase crystal structures, the C-terminal His-tagged end of the apoenzyme adopts a novel helical conformation, causing significant compensatory changes in the region. The structural accommodations observed in B. anthracis NAD+ synthetase are remarkable in the absence of adverse affects on enzyme activity. They also illustrate a rare example of the influence of a non-native C-terminal His-tag extension on the structure of a native protein. In contrast to the apoenzyme, when AMP and pyrophosphate or adenosine 5'-(alpha,beta-methylene)triphosphate are bound, the C-terminus adopts a conformation that allows ATP binding and overall the structure then resembles other NAD+ synthetase structures. The structures of NAD+ synthetase complexes from B. anthracis are compared with published X-ray crystal structures of the enzyme from B. subtilis, Escherichia coli and Helicobacter pylori. These comparisons support the novel observation that P1 and P2 loop ordering is not a consequence of crystal contacts but rather a consequence of intrinsic intramolecular interactions within the ordered subunit.


    Organizational Affiliation

    Center for Biophysical Sciences and Engineering, University of Alabama at Birmingham, Birmingham, AL 35294-4440, USA.




Macromolecules

Find similar proteins by: Sequence  |  Structure

Entity ID: 1
MoleculeChainsSequence LengthOrganismDetails
NH(3)-dependent NAD(+) synthetase
A, B
284Bacillus anthracisMutation(s): 0 
Gene Names: nadE
EC: 6.3.1.5
Find proteins for Q81RP3 (Bacillus anthracis)
Go to UniProtKB:  Q81RP3
Small Molecules
Ligands 3 Unique
IDChainsName / Formula / InChI Key2D Diagram3D Interactions
GOL
Query on GOL

Download SDF File 
Download CCD File 
A, B
GLYCEROL
GLYCERIN; PROPANE-1,2,3-TRIOL
C3 H8 O3
PEDCQBHIVMGVHV-UHFFFAOYSA-N
 Ligand Interaction
APC
Query on APC

Download SDF File 
Download CCD File 
A, B
DIPHOSPHOMETHYLPHOSPHONIC ACID ADENOSYL ESTER
ALPHA,BETA-METHYLENEADENOSINE-5'-TRIPHOSPHATE
C11 H18 N5 O12 P3
CAWZRIXWFRFUQB-IOSLPCCCSA-N
 Ligand Interaction
MG
Query on MG

Download SDF File 
Download CCD File 
A, B
MAGNESIUM ION
Mg
JLVVSXFLKOJNIY-UHFFFAOYSA-N
 Ligand Interaction
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 2 Å
  • R-Value Free: 0.229 
  • R-Value Work: 0.202 
  • Space Group: P 21 21 2
Unit Cell:
Length (Å)Angle (°)
a = 107.183α = 90.00
b = 96.507β = 90.00
c = 68.633γ = 90.00
Software Package:
Software NamePurpose
CNSrefinement
StructureStudiodata collection
SCALEPACKdata scaling
DENZOdata reduction
PHASERphasing

Structure Validation

View Full Validation Report or Ramachandran Plots



Entry History 

Deposition Data

Revision History 

  • Version 1.0: 2007-07-31
    Type: Initial release
  • Version 1.1: 2011-07-13
    Type: Derived calculations, Version format compliance