Primary Citation of Related Structures:   2PBI
PubMed Abstract: 
Regulators of G-protein signaling (RGS) proteins enhance the intrinsic GTPase activity of G protein alpha (Galpha) subunits and are vital for proper signaling kinetics downstream of G protein-coupled receptors (GPCRs). R7 subfamily RGS proteins specifically and obligately dimerize with the atypical G protein beta5 (Gbeta5) subunit through an internal G protein gamma (Ggamma)-subunit-like (GGL) domain ...
Regulators of G-protein signaling (RGS) proteins enhance the intrinsic GTPase activity of G protein alpha (Galpha) subunits and are vital for proper signaling kinetics downstream of G protein-coupled receptors (GPCRs). R7 subfamily RGS proteins specifically and obligately dimerize with the atypical G protein beta5 (Gbeta5) subunit through an internal G protein gamma (Ggamma)-subunit-like (GGL) domain. Here we present the 1.95-A crystal structure of the Gbeta5-RGS9 complex, which is essential for normal visual and neuronal signal transduction. This structure reveals a canonical RGS domain that is functionally integrated within a molecular complex that is poised for integration of multiple steps during G-protein activation and deactivation.
Organizational Affiliation: 
Department of Pharmacology, University of North Carolina School of Medicine, Campus Box 7365, Chapel Hill, North Carolina 27599-7365, USA.