2NML

Crystal structure of HEF2/ERH at 1.55 A resolution


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.55 Å
  • R-Value Free: 0.238 
  • R-Value Work: 0.198 
  • R-Value Observed: 0.200 

wwPDB Validation   3D Report Full Report


This is version 1.4 of the entry. See complete history


Literature

A 1.55 A resolution X-ray crystal structure of HEF2/ERH and insights into its transcriptional and cell-cycle interaction networks.

Jin, T.Guo, F.Serebriiskii, I.G.Howard, A.Zhang, Y.Z.

(2007) Proteins 68: 427-437

  • DOI: https://doi.org/10.1002/prot.21343
  • Primary Citation of Related Structures:  
    2NML

  • PubMed Abstract: 

    Functional complementation screens can identify known or novel proteins with important intracellular activities. We have isolated human enhancer of filamentation 2 (HEF2) in a screen to find human genes that promote pseudohyphal growth in budding yeast. HEF2 is identical to enhancer of rudimentary homolog (ERH), a highly conserved protein of 104 amino acids. In silico protein-interaction mapping implies that HEF2/ERH interacts with transcription factors, cell-cycle regulators, and other proteins shown to enhance filamentous growth in S. cerevisiae, suggesting a context for studies of HEF2/ERH function. To provide a mechanistic basis to study of HEF2/ERH, we have determined the crystal structure of HEF2/ERH at 1.55 A. The crystal asymmetric unit contains a HEF2/ERH monomer. The two monomers of the physiological dimer are related by the y, x, -z crystal symmetric operation. The HEF2/ERH structure is characterized by a novel alpha + beta fold, a four-strand antiparallel beta-sheet with three alpha-helixes on one side of the sheet. The beta-sheets from the two monomers together constitute a pseudo-beta-barrel, and form the center of the functional HEF2/ERH dimer, with a cavity channel at the dimer interface. Docking of this structure to the HEF2/ERH partner protein DCOH/PCD suggests that HEF2/ERH may regulate the oligomeric state of this protein. These data suggest that HEF2/ERH may be an important transcription regulator that also functions in the control of cell-cycle progression.


  • Organizational Affiliation

    Department of Biology, Illinois Institute of Technology, Chicago, Illinois 60616, USA.


Macromolecules
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 1
MoleculeChains Sequence LengthOrganismDetailsImage
Enhancer of rudimentary homolog104Homo sapiensMutation(s): 0 
Gene Names: ERH
UniProt & NIH Common Fund Data Resources
Find proteins for P84090 (Homo sapiens)
Explore P84090 
Go to UniProtKB:  P84090
PHAROS:  P84090
GTEx:  ENSG00000100632 
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
UniProt GroupP84090
Sequence Annotations
Expand
  • Reference Sequence
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.55 Å
  • R-Value Free: 0.238 
  • R-Value Work: 0.198 
  • R-Value Observed: 0.200 
  • Space Group: P 31 2 1
Unit Cell:
Length ( Å )Angle ( ˚ )
a = 53.739α = 90
b = 53.739β = 90
c = 67.448γ = 120
Software Package:
Software NamePurpose
DENZOdata reduction
SCALEPACKdata scaling
CNSrefinement
PDB_EXTRACTdata extraction
HKL-2000data collection
HKL-2000data reduction
SnBphasing

Structure Validation

View Full Validation Report



Entry History 

Deposition Data

Revision History  (Full details and data files)

  • Version 1.0: 2006-10-31
    Type: Initial release
  • Version 1.1: 2008-05-01
    Changes: Version format compliance
  • Version 1.2: 2011-07-13
    Changes: Version format compliance
  • Version 1.3: 2017-10-18
    Changes: Refinement description
  • Version 1.4: 2023-12-27
    Changes: Data collection, Database references