2HD9

Crystal structure of PH1033 from Pyrococcus horikoshii OT3


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.35 Å
  • R-Value Free: 0.234 
  • R-Value Work: 0.228 
  • R-Value Observed: 0.228 

wwPDB Validation 3D Report Full Report


This is version 1.2 of the entry. See complete history


Literature

Nucleant-mediated protein crystallization with the application of microporous synthetic zeolites.

Sugahara, M.Asada, Y.Morikawa, Y.Kageyama, Y.Kunishima, N.

(2008) Acta Crystallogr D Biol Crystallogr 64: 686-695

  • DOI: 10.1107/S0907444908009980
  • Structures With Same Primary Citation

  • PubMed Abstract: 
  • Protein crystallization is still a major bottleneck in structural biology. As the current methodology of protein crystallization is a type of screening, it is usually difficult to crystallize important target proteins. It was thought that hetero-epit ...

    Protein crystallization is still a major bottleneck in structural biology. As the current methodology of protein crystallization is a type of screening, it is usually difficult to crystallize important target proteins. It was thought that hetero-epitaxic growth from the surface of a mineral crystal acting as a nucleant would be an effective enhancer of protein crystallization. However, in spite of almost two decades of effort, a generally applicable hetero-epitaxic nucleant for protein crystallization has yet to be found. Here we introduce the first candidate for a universal hetero-epitaxic nucleant, microporous zeolite: a synthetic aluminosilicate crystalline polymer with regular micropores. It promotes a form-selective crystal nucleation of proteins and acts as a crystallization catalyst. The most successful zeolite nucleant was molecular sieve type 5A with a pore size of 5 A and with bound Ca2+ ions. The zeolite-mediated crystallization improved the crystal quality in five out of six proteins tested. It provided new crystal forms with better resolution in two cases, larger crystals in one case, and zeolite-dependent crystal formations in two cases. The hetero-epitaxic growth of the zeolite-mediated crystals was confirmed by a crystal-packing analysis which revealed a layer-like structure in the crystal lattice.


    Organizational Affiliation

    RIKEN SPring-8 Center, Harima Institute, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan.



Macromolecules

Find similar proteins by: Sequence  |  Structure

Entity ID: 1
MoleculeChainsSequence LengthOrganismDetails
UPF0310 protein PH1033
A
145Pyrococcus horikoshii OT3Mutation(s): 0 
Gene Names: PH1033
Find proteins for O58764 (Pyrococcus horikoshii (strain ATCC 700860 / DSM 12428 / JCM 9974 / NBRC 100139 / OT-3))
Go to UniProtKB:  O58764
Small Molecules
Ligands 3 Unique
IDChainsName / Formula / InChI Key2D Diagram3D Interactions
CIT
Query on CIT

Download CCD File 
A
CITRIC ACID
C6 H8 O7
KRKNYBCHXYNGOX-UHFFFAOYSA-N
 Ligand Interaction
GOL
Query on GOL

Download CCD File 
A
GLYCEROL
C3 H8 O3
PEDCQBHIVMGVHV-UHFFFAOYSA-N
 Ligand Interaction
CA
Query on CA

Download CCD File 
A
CALCIUM ION
Ca
BHPQYMZQTOCNFJ-UHFFFAOYSA-N
 Ligand Interaction
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.35 Å
  • R-Value Free: 0.234 
  • R-Value Work: 0.228 
  • R-Value Observed: 0.228 
  • Space Group: P 32 2 1
Unit Cell:
Length ( Å )Angle ( ˚ )
a = 39.891α = 90
b = 39.891β = 90
c = 168.481γ = 120
Software Package:
Software NamePurpose
MOLREPphasing
CNSrefinement
HKL-2000data reduction
HKL-2000data scaling

Structure Validation

View Full Validation Report



Entry History 

Deposition Data

Revision History 

  • Version 1.0: 2006-12-20
    Type: Initial release
  • Version 1.1: 2008-05-01
    Changes: Version format compliance
  • Version 1.2: 2011-07-13
    Changes: Source and taxonomy, Version format compliance