2CWV

Product schiff-base intermediate of copper amine oxidase from arthrobacter globiformis


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.85 Å
  • R-Value Free: 0.231 
  • R-Value Work: 0.201 
  • R-Value Observed: 0.203 

wwPDB Validation   3D Report Full Report


This is version 1.3 of the entry. See complete history


Literature

Kinetic and Structural Studies on the Catalytic Role of the Aspartic Acid Residue Conserved in Copper Amine Oxidase(,)

Chiu, Y.C.Okajima, T.Murakawa, T.Uchida, M.Taki, M.Hirota, S.Kim, M.Yamaguchi, H.Kawano, Y.Kamiya, N.Kuroda, S.Hayashi, H.Yamamoto, Y.Tanizawa, K.

(2006) Biochemistry 45: 4105-4120

  • DOI: 10.1021/bi052464l
  • Primary Citation of Related Structures:  
    2CWT, 2CWU, 2CWV

  • PubMed Abstract: 
  • Copper amine oxidase contains a post-translationally generated quinone cofactor, topa quinone (TPQ), which mediates electron transfer from the amine substrate to molecular oxygen. The overall catalytic reaction is divided into the former reductive and the latter oxidative half-reactions based on the redox state of TPQ ...

    Copper amine oxidase contains a post-translationally generated quinone cofactor, topa quinone (TPQ), which mediates electron transfer from the amine substrate to molecular oxygen. The overall catalytic reaction is divided into the former reductive and the latter oxidative half-reactions based on the redox state of TPQ. In the reductive half-reaction, substrate amine reacts with the C5 carbonyl group of the oxidized TPQ, forming the substrate Schiff base (TPQ(ssb)), which is then converted to the product Schiff base (TPQ(psb)). During this step, an invariant Asp residue with an elevated pKa is presumed to serve as a general base accepting the alpha proton of the substrate. When Asp298, the putative active-site base in the recombinant enzyme from Arthrobacter globiformis, was mutated into Ala, the catalytic efficiency dropped to a level of about 10(6) orders of magnitude smaller than the wild-type (WT) enzyme, consistent with the essentiality of Asp298. Global analysis of the slow UV/vis spectral changes observed during the reductive half-reaction of the D298A mutant with 2-phenylethylamine provided apparent rate constants for the formation and decay of TPQ(ssb) (k(obs) = 4.7 and 4.8 x 10(-4) s(-1), respectively), both of which are markedly smaller than those of the WT enzyme determined by rapid-scan stopped-flow analysis (k(obs) = 699 and 411 s(-1), respectively). Thus, Asp298 plays important roles not only in the alpha-proton abstraction from TPQ(ssb) but also in other steps in the reductive half-reaction. X-ray diffraction analyses of D298A crystals soaked with the substrate for 1 h and 1 week revealed the structures of TPQ(ssb) and TPQ(psb), respectively, as pre-assigned by single-crystal microspectrophotometry. Consistent with the stereospecificity of alpha-proton abstraction, the pro-S alpha-proton of TPQ(ssb) to be abstracted is positioned nearly perpendicularly to the plane formed by the Schiff-base imine double bond conjugating with the quinone ring of TPQ, so that the orbitals of sigma and pi electrons maximally overlap in the conjugate system. More intriguingly, the pro-S alpha proton of the substrate is released stereospecifically even in the reaction catalyzed by the base-lacking D298A mutant. On the basis of these results, we propose that the stereospecificity of alpha-proton abstraction is primarily determined by the conformation of TPQ(ssb), rather than the relative geometry of TPQ and the catalytic base.


    Organizational Affiliation

    Institute of Scientific and Industrial Research, Osaka University, Ibaraki, Osaka 567-0047, Japan.



Macromolecules
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 1
MoleculeChainsSequence LengthOrganismDetailsImage
Phenylethylamine oxidaseA, B638Arthrobacter globiformisMutation(s): 2 
EC: 1.4.3.6 (PDB Primary Data), 1.4.3.21 (UniProt)
UniProt
Find proteins for P46881 (Arthrobacter globiformis)
Explore P46881 
Go to UniProtKB:  P46881
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
UniProt GroupP46881
Protein Feature View
Expand
  • Reference Sequence
Small Molecules
Ligands 1 Unique
IDChainsName / Formula / InChI Key2D Diagram3D Interactions
CU
Query on CU

Download Ideal Coordinates CCD File 
C [auth A],
D [auth B]
COPPER (II) ION
Cu
JPVYNHNXODAKFH-UHFFFAOYSA-N
 Ligand Interaction
Modified Residues  1 Unique
IDChainsTypeFormula2D DiagramParent
2TY
Query on 2TY
A, B L-PEPTIDE LINKINGC17 H18 N2 O4TYR
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.85 Å
  • R-Value Free: 0.231 
  • R-Value Work: 0.201 
  • R-Value Observed: 0.203 
  • Space Group: I 1 2 1
Unit Cell:
Length ( Å )Angle ( ˚ )
a = 157.702α = 90
b = 62.849β = 112.43
c = 184.125γ = 90
Software Package:
Software NamePurpose
MOSFLMdata reduction
SCALAdata scaling
CNSrefinement
CCP4data scaling
CNSphasing

Structure Validation

View Full Validation Report




Entry History 

Deposition Data

Revision History  (Full details and data files)

  • Version 1.0: 2006-05-02
    Type: Initial release
  • Version 1.1: 2008-04-30
    Changes: Version format compliance
  • Version 1.2: 2011-07-13
    Changes: Version format compliance
  • Version 1.3: 2021-11-10
    Changes: Database references, Derived calculations