2CAZ

ESCRT-I core


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 3.6 Å
  • R-Value Free: 0.357 
  • R-Value Work: 0.328 

wwPDB Validation 3D Report Full Report


This is version 1.4 of the entry. See complete history

Literature

Escrt-I Core and Escrt-II Glue Domain Structures Reveal Role for Glue in Linking to Escrt-I and Membranes.

Teo, H.Gill, D.J.Sun, J.Perisic, O.Veprintsev, D.B.Wallis, Y.Emr, S.D.Williams, R.L.

(2006) Cell 125: 99

  • DOI: 10.1016/j.cell.2006.01.047
  • Primary Citation of Related Structures:  

  • PubMed Abstract: 
  • ESCRT complexes form the main machinery driving protein sorting from endosomes to lysosomes. Currently, the picture regarding assembly of ESCRTs on endosomes is incomplete. The structure of the conserved heterotrimeric ESCRT-I core presented here sho ...

    ESCRT complexes form the main machinery driving protein sorting from endosomes to lysosomes. Currently, the picture regarding assembly of ESCRTs on endosomes is incomplete. The structure of the conserved heterotrimeric ESCRT-I core presented here shows a fan-like arrangement of three helical hairpins, each corresponding to a different subunit. Vps23/Tsg101 is the central hairpin sandwiched between the other subunits, explaining the critical role of its "steadiness box" in the stability of ESCRT-I. We show that yeast ESCRT-I links directly to ESCRT-II, through a tight interaction of Vps28 (ESCRT-I) with the yeast-specific zinc-finger insertion within the GLUE domain of Vps36 (ESCRT-II). The crystal structure of the GLUE domain missing this insertion reveals it is a split PH domain, with a noncanonical lipid binding pocket that binds PtdIns3P. The simultaneous and reinforcing interactions of ESCRT-II GLUE domain with membranes, ESCRT-I, and ubiquitin are critical for ubiquitinated cargo progression from early to late endosomes.


    Organizational Affiliation

    MRC Laboratory of Molecular Biology, Medical Research Council Centre, Cambridge, CB2 2QH, United Kingdom. hlt@mrc-lmb.cam.ac.uk




Macromolecules

Find similar proteins by: Sequence  |  Structure

Entity ID: 1
MoleculeChainsSequence LengthOrganismDetails
SUPPRESSOR PROTEIN STP22 OF TEMPERATURE-SENSITIVE ALPHA-FACTOR RECEPTOR AND ARGININE PERMEASE
A, D
82Saccharomyces cerevisiae (strain ATCC 204508 / S288c)Mutation(s): 0 
Gene Names: STP22 (VPS23)
Find proteins for P25604 (Saccharomyces cerevisiae (strain ATCC 204508 / S288c))
Go to UniProtKB:  P25604
Entity ID: 2
MoleculeChainsSequence LengthOrganismDetails
VACUOLAR PROTEIN SORTING-ASSOCIATED PROTEIN VPS28
B, E
155Saccharomyces cerevisiae (strain ATCC 204508 / S288c)Mutation(s): 0 
Gene Names: VPS28 (VPT28)
Find proteins for Q02767 (Saccharomyces cerevisiae (strain ATCC 204508 / S288c))
Go to Gene View: VPS28
Go to UniProtKB:  Q02767
Entity ID: 3
MoleculeChainsSequence LengthOrganismDetails
PROTEIN SRN2
C, F
85Saccharomyces cerevisiae (strain ATCC 204508 / S288c)Mutation(s): 0 
Gene Names: SRN2 (SRN10, VPS37)
Find proteins for Q99176 (Saccharomyces cerevisiae (strain ATCC 204508 / S288c))
Go to UniProtKB:  Q99176
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 3.6 Å
  • R-Value Free: 0.357 
  • R-Value Work: 0.328 
  • Space Group: P 61
Unit Cell:
Length (Å)Angle (°)
a = 167.914α = 90.00
b = 167.914β = 90.00
c = 50.242γ = 120.00
Software Package:
Software NamePurpose
SCALAdata scaling
SHARPphasing
REFMACrefinement
MOSFLMdata reduction
SnBphasing

Structure Validation

View Full Validation Report or Ramachandran Plots



Entry History 

Deposition Data

Revision History 

  • Version 1.0: 2006-04-07
    Type: Initial release
  • Version 1.1: 2011-05-08
    Type: Version format compliance
  • Version 1.2: 2011-07-13
    Type: Version format compliance
  • Version 1.3: 2017-07-05
    Type: Refinement description
  • Version 1.4: 2019-05-08
    Type: Data collection, Experimental preparation