2BMB

X-ray structure of the bifunctional 6-hydroxymethyl-7,8- dihydroxypterin pyrophosphokinase dihydropteroate synthase from Saccharomyces cerevisiae


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.3 Å
  • R-Value Free: 0.216 
  • R-Value Work: 0.178 

wwPDB Validation 3D Report Full Report


This is version 1.3 of the entry. See complete history

Literature

The Three-Dimensional Structure of the Bifunctional 6-Hydroxymethyl-7,8-Dihydropterin Pyrophosphokinase/Dihydropteroate Synthase of Saccharomyces Cerevisiae

Lawrence, M.C.Iliades, P.Fernley, R.T.Berglez, J.Pilling, P.A.Macreadie, I.G.

(2005) J.Mol.Biol. 348: 655

  • DOI: 10.1016/j.jmb.2005.03.021

  • PubMed Abstract: 
  • In Saccharomyces cerevisiae and other fungi, the enzymes dihydroneopterin aldolase, 6-hydroxymethyl-7,8-dihydropterin pyrophosphokinase (HPPK) and dihydropteroate synthase (DHPS) are encoded by a polycistronic gene that is translated into a single po ...

    In Saccharomyces cerevisiae and other fungi, the enzymes dihydroneopterin aldolase, 6-hydroxymethyl-7,8-dihydropterin pyrophosphokinase (HPPK) and dihydropteroate synthase (DHPS) are encoded by a polycistronic gene that is translated into a single polypeptide having all three functions. These enzymatic functions are essential to both prokaryotes and lower eukaryotes, and catalyse sequential reactions in folate biosynthesis. Deletion or disruption of either function leads to cell death. These enzymes are absent from mammals and thus make ideal antimicrobial targets. DHPS is currently the target of antifolate therapy for a number of infectious diseases, and its activity is inhibited by sulfonamides and sulfones. These drugs are typically used as part of a synergistic cocktail with the 2,4-diaminopyrimidines that inhibit dihydrofolate reductase. A gene encoding the S.cerevisiae HPPK and DHPS enzymes has been cloned and expressed in Escherichia coli. A complex of the purified bifunctional polypeptide with a pterin monophosphate substrate analogue has been crystallized, and its structure solved by molecular replacement and refined to 2.3A resolution. The polypeptide consists of two structural domains, each of which closely resembles its respective monofunctional bacterial HPPK and DHPS counterpart. The mode of ligand binding is similar to that observed in the bacterial enzymes. The association between the domains within the polypeptide as well as the quaternary association of the polypeptide via its constituent DHPS domains provide insight into the assembly of the trifunctional enzyme in S.cerevisiae and probably other fungal species.


    Organizational Affiliation

    CSIRO Health Sciences and Nutrition, 343 Royal Parade, Parkville, Victoria 3052, Australia. mike.lawrence@csiro.au




Macromolecules

Find similar proteins by: Sequence  |  Structure

Entity ID: 1
MoleculeChainsSequence LengthOrganismDetails
FOLIC ACID SYNTHESIS PROTEIN FOL1
A
545Saccharomyces cerevisiae (strain ATCC 204508 / S288c)Gene Names: FOL1
EC: 2.5.1.15, 4.1.2.25, 2.7.6.3
Find proteins for P53848 (Saccharomyces cerevisiae (strain ATCC 204508 / S288c))
Go to UniProtKB:  P53848
Small Molecules
Ligands 1 Unique
IDChainsName / Formula / InChI Key2D Diagram3D Interactions
PMM
Query on PMM

Download SDF File 
Download CCD File 
A
PTERIN-6-YL-METHYL-MONOPHOSPHATE
C7 H8 N5 O5 P
AJXFJEHKGGCFNM-UHFFFAOYSA-N
 Ligand Interaction
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.3 Å
  • R-Value Free: 0.216 
  • R-Value Work: 0.178 
  • Space Group: P 41 21 2
Unit Cell:
Length (Å)Angle (°)
a = 92.566α = 90.00
b = 92.566β = 90.00
c = 192.401γ = 90.00
Software Package:
Software NamePurpose
MOLREPphasing
REFMACrefinement
SCALEPACKdata scaling
DENZOdata reduction

Structure Validation

View Full Validation Report or Ramachandran Plots



Entry History 

Deposition Data

Revision History 

  • Version 1.0: 2006-01-17
    Type: Initial release
  • Version 1.1: 2011-05-08
    Type: Version format compliance
  • Version 1.2: 2011-07-13
    Type: Version format compliance
  • Version 1.3: 2017-07-05
    Type: Data collection